Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39178845

RESUMO

While guided human cortical organoid (hCO) protocols reproducibly generate cortical cell types at one site, variability in hCO phenotypes across sites using a harmonized protocol has not yet been evaluated. To determine the cross-site reproducibility of hCO differentiation, three independent research groups assayed hCOs in multiple differentiation replicates from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol across 3 months. hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and expression of metabolism and cellular stress genes. Variability in hCO phenotypes correlated with stem cell gene expression prior to differentiation and technical factors associated with seeding, suggesting iPSC quality and treatment are important for differentiation outcomes. Cross-site reproducibility of hCO cell type proportions and organization encourages future prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.

2.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546772

RESUMO

Background: Reproducibility of human cortical organoid (hCO) phenotypes remains a concern for modeling neurodevelopmental disorders. While guided hCO protocols reproducibly generate cortical cell types in multiple cell lines at one site, variability across sites using a harmonized protocol has not yet been evaluated. We present an hCO cross-site reproducibility study examining multiple phenotypes. Methods: Three independent research groups generated hCOs from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol. scRNA-seq, 3D fluorescent imaging, phase contrast imaging, qPCR, and flow cytometry were used to characterize the 3 month differentiations across sites. Results: In all sites, hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions with moderate to high fidelity to the in vivo brain that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and morphology. Differential gene expression showed differences in metabolism and cellular stress across sites. Although iPSC culture conditions were consistent and iPSCs remained undifferentiated, primed stem cell marker expression prior to differentiation correlated with cell type proportions in hCOs. Conclusions: We identified hCO phenotypes that are reproducible across sites using a harmonized differentiation protocol. Previously described limitations of hCO models were also reproduced including off-target differentiations, necrotic cores, and cellular stress. Improving our understanding of how stem cell states influence early hCO cell types may increase reliability of hCO differentiations. Cross-site reproducibility of hCO cell type proportions and organization lays the foundation for future collaborative prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA