Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38940916

RESUMO

Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and TnI altering calcium sensitivity. We measured degradation of other myofilament proteins including cMyBP-C and actininshowing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.

2.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961455

RESUMO

Aims: Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance. Treatment of AFib involves restoration of the atrial electrical rhythm. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs that involves decreased blood flow velocity and reduced atrial contractility. This suggests that defects in contractility occur in AFib and are revealed upon restoration of rhythm. The aim of this project is to define the contractile remodeling that occurs in AFib. Methods and Results: To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction in skinned single cardiomyocyte calcium-force studies. There were no significant differences in myosin heavy chain isoform expression. Resting tension is decreased in the AFib samples correlating with reduced full-length titin in the sarcomere. We measured degradation of other myofilament proteins including cMyBP-C, actinin, and cTnI, showing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. Skinned cardiomyocytes from AFib atria showed decreased troponin I phosphorylation, consistent with the increased calcium sensitivity that was found within these cardiomyocytes. Conclusions: With these results it can be concluded that AFib causes alterations in contraction that can be explained by both molecular changes occurring in myofilament proteins and overall myofilament protein degradation. These results provide an understanding of the contractile remodeling that occurs in AFib and provides insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.

3.
J Gen Physiol ; 155(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398997

RESUMO

Structural and functional studies of heart muscle are important to gain insights into the physiological bases of cardiac muscle contraction and the pathological bases of heart disease. While fresh muscle tissue works best for these kinds of studies, this is not always practical to obtain, especially for heart tissue from large animal models and humans. Conversely, tissue banks of frozen human hearts are available and could be a tremendous resource for translational research. It is not well understood, however, how liquid nitrogen freezing and cryostorage may impact the structural integrity of myocardium from large mammals. In this study, we directly compared the structural and functional integrity of never-frozen to previously frozen porcine myocardium to investigate the consequences of freezing and cryostorage. X-ray diffraction measurements from hydrated tissue under near-physiological conditions and electron microscope images from chemically fixed porcine myocardium showed that prior freezing has only minor effects on structural integrity of the muscle. Furthermore, mechanical studies similarly showed no significant differences in contractile capabilities of porcine myocardium with and without freezing and cryostorage. These results demonstrate that liquid nitrogen preservation is a practical approach for structural and functional studies of myocardium.


Assuntos
Criopreservação , Miocárdio , Humanos , Suínos , Animais , Criopreservação/métodos , Congelamento , Contração Miocárdica , Nitrogênio , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...