Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 205(11): 1290-1299, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290169

RESUMO

Rationale: GM-CSF (granulocyte-macrophage colony-stimulating factor) has emerged as a promising target against the hyperactive host immune response associated with coronavirus disease (COVID-19). Objectives: We sought to investigate the efficacy and safety of gimsilumab, an anti-GM-CSF monoclonal antibody, for the treatment of hospitalized patients with elevated inflammatory markers and hypoxemia secondary to COVID-19. Methods: We conducted a 24-week randomized, double-blind, placebo-controlled trial, BREATHE (Better Respiratory Education and Treatment Help Empower), at 21 locations in the United States. Patients were randomized 1:1 to receive two doses of intravenous gimsilumab or placebo 1 week apart. The primary endpoint was all-cause mortality rate at Day 43. Key secondary outcomes were ventilator-free survival rate, ventilator-free days, and time to hospital discharge. Enrollment was halted early for futility based on an interim analysis. Measurements and Main Results: Of the planned 270 patients, 225 were randomized and dosed; 44.9% of patients were Hispanic or Latino. The gimsilumab and placebo groups experienced an all-cause mortality rate at Day 43 of 28.3% and 23.2%, respectively (adjusted difference = 5% vs. placebo; 95% confidence interval [-6 to 17]; P = 0.377). Overall mortality rates at 24 weeks were similar across the treatment arms. The key secondary endpoints demonstrated no significant differences between groups. Despite the high background use of corticosteroids and anticoagulants, adverse events were generally balanced between treatment groups. Conclusions: Gimsilumab did not improve mortality or other key clinical outcomes in patients with COVID-19 pneumonia and evidence of systemic inflammation. The utility of anti-GM-CSF therapy for COVID-19 remains unclear. Clinical trial registered with www.clinicaltrials.gov (NCT04351243).


Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais Humanizados/uso terapêutico , Método Duplo-Cego , Humanos , Inflamação
2.
J Bioinform Comput Biol ; 5(6): 1155-72, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18172923

RESUMO

When searching for disease-causing mutations with polymerase chain reaction (PCR)-based methods, candidate genes are usually screened in their entirety, exon by exon. Genomic resources (i.e. www.ncbi.nih.gov, www.ensembl.org, and genome.ucsc.edu) largely support this paradigm for mutation screening by making it easy to view and access sequence data associated with genes in their genomic context. However, the administrative burden of conducting mutation screening in potentially hundreds of genes and thousands of exons in thousands of patients is significant, even with the use of public genome resources. For example, the manual design of oligonucleotide primers for all exons of the 10 Leber's congenital amaurosis (LCA) genes (149 exons) represents a significant information management challenge. The Transcript Annotation Prioritization and Screening System (TrAPSS) is designed to accelerate mutation screening by (1) providing a gene-based local cache of candidate disease genes in a genomic context, (2) automating tasks associated with optimizing candidate disease gene screening and information management, and (3) providing the implementation of an algorithmic technique to utilize large amounts of heterogeneous genome annotation (e.g. conserved protein functional domains) so as to prioritize candidate genes.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Mutação , Algoritmos , Biologia Computacional , Bases de Dados Genéticas , Genômica/estatística & dados numéricos , Humanos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...