Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 60(9): 1590-1602, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363040

RESUMO

The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.


Assuntos
Mitocôndrias/metabolismo , Esfingolipídeos/metabolismo , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidases/metabolismo , Ceramidas/metabolismo , Ácidos Graxos Insaturados/farmacologia , Glucosiltransferases/metabolismo , Células HL-60 , Humanos , Immunoblotting , Lisofosfolipídeos/metabolismo , Espectrometria de Massas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/análogos & derivados , Esfingosina/metabolismo
2.
Biochem Pharmacol ; 130: 21-33, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28189725

RESUMO

The anticancer properties of ceramide, a sphingolipid with potent tumor-suppressor properties, can be dampened via glycosylation, notably in multidrug resistance wherein ceramide glycosylation is characteristically elevated. Earlier works using the ceramide analog, C6-ceramide, demonstrated that the antiestrogen tamoxifen, a first generation P-glycoprotein (P-gp) inhibitor, blocked C6-ceramide glycosylation and magnified apoptotic responses. The present investigation was undertaken with the goal of discovering non-anti-estrogenic alternatives to tamoxifen that could be employed as adjuvants for improving the efficacy of ceramide-centric therapeutics in treatment of cancer. Herein we demonstrate that the tamoxifen metabolites, desmethyltamoxifen and didesmethyltamoxifen, and specific, high-affinity P-gp inhibitors, tariquidar and zosuquidar, synergistically enhanced C6-ceramide cytotoxicity in multidrug resistant HL-60/VCR acute myelogenous leukemia (AML) cells, whereas the selective estrogen receptor antagonist, fulvestrant, was ineffective. Active C6-ceramide-adjuvant combinations elicited mitochondrial ROS production and cytochrome c release, and induced apoptosis. Cytotoxicity was mitigated by introduction of antioxidant. Effective adjuvants markedly inhibited C6-ceramide glycosylation as well as conversion to sphingomyelin. Active regimens were also effective in KG-1a cells, a leukemia stem cell-like line, and in LoVo human colorectal cancer cells, a solid tumor model. In summary, our work details discovery of the link between P-gp inhibitors and the regulation and potentiation of ceramide metabolism in a pro-apoptotic direction in cancer cells. Given the active properties of these adjuvants in synergizing with C6-ceramide, independent of drug resistance status, stemness, or cancer type, our results suggest that the C6-ceramide-containing regimens could provide alternative, promising therapeutic direction, in addition to finding novel, off-label applications for P-gp inhibitors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Ceramidas/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Ceramidas/química , Células HL-60 , Humanos
3.
J Lipid Res ; 57(7): 1231-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27140664

RESUMO

The objective of our study was to determine the mechanism of action of the short-chain ceramide analog, C6-ceramide, and the breast cancer drug, tamoxifen, which we show coactively depress viability and induce apoptosis in human acute myelogenous leukemia cells. Exposure to the C6-ceramide-tamoxifen combination elicited decreases in mitochondrial membrane potential and complex I respiration, increases in reactive oxygen species (ROS), and release of mitochondrial proapoptotic proteins. Decreases in ATP levels, reduced glycolytic capacity, and reduced expression of inhibitors of apoptosis proteins also resulted. Cytotoxicity of the drug combination was mitigated by exposure to antioxidant. Cells metabolized C6-ceramide by glycosylation and hydrolysis, the latter leading to increases in long-chain ceramides. Tamoxifen potently blocked glycosylation of C6-ceramide and long-chain ceramides. N-desmethyltamoxifen, a poor antiestrogen and the major tamoxifen metabolite in humans, was also effective with C6-ceramide, indicating that traditional antiestrogen pathways are not involved in cellular responses. We conclude that cell death is driven by mitochondrial targeting and ROS generation and that tamoxifen enhances the ceramide effect by blocking its metabolism. As depletion of ATP and targeting the "Warburg effect" represent dynamic metabolic insult, this ceramide-containing combination may be of utility in the treatment of leukemia and other cancers.


Assuntos
Ceramidas/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Tamoxifeno/administração & dosagem , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Cancer Lett ; 376(2): 199-204, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27045476

RESUMO

Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface ß1 and ß4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVß6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects.


Assuntos
Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ceramidas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Integrinas/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/química , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Composição de Medicamentos , Células HCT116 , Células HT29 , Humanos , Integrina beta1/metabolismo , Integrina beta4/metabolismo , Estrutura Molecular , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
5.
Leuk Res ; 39(10): 1071-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26220867

RESUMO

Fenretinide, N-(4-hydroxyphenyl)retinamide, (4-HPR), a synthetic retinoid, owes its cancer-toxic effects in part to the generation of ceramide, a potent tumor-suppressing sphingolipid. As such, 4-HPR has garnered considerable interest as a chemotherapeutic. Cancer cells, however, via various metabolic routes, inactivate ceramide, and this can limit 4-HPR efficacy. As relatively little is known regarding 4-HPR-induced ceramide management in acute myelogeneous leukemia (AML), we undertook the present study to evaluate the impact of 4-HPR on ceramide production, metabolism, and cytotoxicity. In KG-1, HL-60, and HL-60/VCR (multidrug resistant) human leukemia cells, 4-HPR induced 15-, 2-, and 20-fold increases in ceramide (measured using [3H]palmitic acid), respectively. By use of specific inhibitors we show that ceramide was produced by sphingomyelinase and de novo pathways in response to 4-HPR exposure. HL-60/VCR cells metabolized ceramide to glucosylceramide (GC). 4-HPR exposure (1.25-10 µM) reduced viability in all cell lines, with approximate IC50's ranging from 1 to 8.0 µM. Reactive oxygen species (ROS) were generated in response to 4-HPR treatment, and the concomitant cytotoxicity was reversed by addition of vitamin E. 4-HPR was not cytotoxic nor did it elicit ceramide formation in K562, a chronic myeloid leukemia cell line; however, K562 cells were sensitive to a cell-deliverable form of ceramide, C6-ceramide. Treatment of Molt-3, an acute lymphoblastic leukemia cell line, with 4-HPR revealed moderate ceramide production (5-fold over control), robust conversion of ceramide to GC and sphingomyelin, and resistance to 4-HPR and C6-ceramide. In conclusion, this work demonstrates diversity within and among leukemia in 4-HPR sensitivity and ceramide generation and subsequent metabolism. As such, knowledge of these metabolic pathways can provide guidance for enhancing ceramide-driven effects of 4-HPR in treatment of leukemia.


Assuntos
Antineoplásicos/farmacologia , Ceramidas/biossíntese , Fenretinida/farmacologia , Leucemia/metabolismo , Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Camada Fina , Fenretinida/metabolismo , Células HL-60 , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...