Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38529759

RESUMO

FungiDB (https://fungidb.org) serves as a valuable online resource that seamlessly integrates genomic and related large-scale data for a wide range of fungal and oomycete species. As an integral part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org), FungiDB continually integrates both published and unpublished data addressing various aspects of fungal biology. Established in early 2011, the database has evolved to support 674 datasets. The datasets include over 300 genomes spanning various taxa (e.g. Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota, as well as Albuginales, Peronosporales, Pythiales, and Saprolegniales). In addition to genomic assemblies and annotation, over 300 extra datasets encompassing diverse information, such as expression and variation data, are also available. The resource also provides an intuitive web-based interface, facilitating comprehensive approaches to data mining and visualization. Users can test their hypotheses and navigate through omics-scale datasets using a built-in search strategy system. Moreover, FungiDB offers capabilities for private data analysis via the integrated VEuPathDB Galaxy platform. FungiDB also permits genome improvements by capturing expert knowledge through the User Comments system and the Apollo genome annotation editor for structural and functional gene curation. FungiDB facilitates data exploration and analysis and contributes to advancing research efforts by capturing expert knowledge for fungal and oomycete species.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Fungos , Internet , Oomicetos , Oomicetos/genética , Fungos/genética , Biologia Computacional/métodos , Genoma Fúngico , Genômica/métodos , Software
2.
Nucleic Acids Res ; 52(D1): D808-D816, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953350

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.


Assuntos
Biologia Computacional , Eucariotos , Animais , Biologia Computacional/métodos , Invertebrados , Bases de Dados Factuais
3.
Syst Appl Microbiol ; 46(6): 126468, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37847957

RESUMO

Chlamydiota are an ancient and hyperdiverse phylum of obligate intracellular bacteria. The best characterized representatives are pathogens or parasites of mammals, but it is thought that their most common hosts are microeukaryotes like Amoebozoa. The diversity in taxonomy, evolution, and function of non-pathogenic Chlamydiota are slowly being described. Here we use data mining techniques and genomic analysis to extend our current knowledge of Chlamydiota diversity and its hosts, in particular the Order Parachlamydiales. We extract one Rhabdochlamydiaceae and three Simkaniaceae Metagenome-Assembled Genomes (MAGs) from NCBI Short Read Archive deposits of ciliate and algal genome sequencing projects. We then use these to identify a further 14 and 8 MAGs respectively amongst existing, unidentified environmental assemblies. From these data we identify two novel clades with host associated data, for which we propose the names "Sacchlamyda saccharinae" (Family Rhabdochlamydiaceae) and "Amphrikana amoebophyrae" (Family Simkaniaceae), as well as a third new clade of environmental MAGs "Acheromyda pituitae" (Family Rhabdochlamydiaceae). The extent of uncharacterized diversity within the Rhabdochlamydiaceae and Simkaniaceae is indicated by 16 of the 22 MAGs being evolutionarily distant from currently characterised genera. Within our limited data, there was great predicted diversity in Parachlamydiales metabolism and evolution, including the potential for metabolic and defensive symbioses as well as pathogenicity. These data provide an imperative to link genomic diversity in metagenomics data to their associated eukaryotic host, and to develop onward understanding of the functional significance of symbiosis with this hyperdiverse clade.


Assuntos
Chlamydiales , Metagenoma , Animais , Chlamydiales/genética , Filogenia , RNA Ribossômico 16S/genética , Bactérias , Metagenômica/métodos , Mamíferos/genética
4.
Environ Microbiol ; 25(12): 3064-3074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658745

RESUMO

Symbiotic bacteria can alter host biology by providing protection from natural enemies, or alter reproduction or vectoral competence. Symbiont-linked control of vector-borne disease in Anopheles has been hampered by a lack of symbioses that can establish stable vertical transmission in the host. Previous screening found the symbiont 'Candidatus Tisiphia' in Anopheles plumbeus, an aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We screened samples collected over 10-years across Germany and used climate databases to assess environmental influence on incidence. We observed a 95% infection rate, and that the frequency of infection did not fluctuate with broad environmental factors. Maternal inheritance is indicated by presence in the ovaries through FISH microscopy. Finally, we assembled a high-quality 1.6 Mbp draft genome of 'Ca. Tisiphia' to explore its phylogeny and potential metabolic competence. The infection is closely related to strains found in Culicoides biting midges and shows similar patterns of metabolism, providing no evidence of the capacity to synthesize B-vitamins. This infection offers avenues for onward research in anopheline mosquito symbioses. Additionally, it provides future opportunity to study the impact of 'Ca. Tisiphia' on natural and transinfected hosts, especially in relation to reproductive fitness and vectorial competence and capacity.


Assuntos
Anopheles , Ceratopogonidae , Rickettsiaceae , Animais , Mosquitos Vetores , Ceratopogonidae/microbiologia , Clima
5.
Nat Commun ; 13(1): 2630, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551207

RESUMO

Members of the bacterial genus Rickettsia were originally identified as causative agents of vector-borne diseases in mammals. However, many Rickettsia species are arthropod symbionts and close relatives of 'Candidatus Megaira', which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes of Rickettsia species from understudied groups, including the Torix group, and two genomes of 'Ca. Megaira' from various insects and microeukaryotes. Our analyses of the new genomes, in comparison with previously described ones, indicate that the accessory genome diversity and broad host range of Torix Rickettsia are comparable to those of all other Rickettsia combined. Therefore, the Torix clade may play unrecognized roles in invertebrate biology and physiology. We argue this clade should be given its own genus status, for which we propose the name 'Candidatus Tisiphia'.


Assuntos
Artrópodes , Rickettsia , Animais , Genômica , Mamíferos , Filogenia , Rickettsia/genética , Simbiose/genética
6.
Gigascience ; 10(3)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764469

RESUMO

BACKGROUND: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia. RESULTS: This study describes the serendipitous discovery of Rickettsia amplicons in the Barcode of Life Data System (BOLD), a sequence database specifically designed for the curation of mitochondrial DNA barcodes. Of 184,585 barcode sequences analysed, Rickettsia is observed in ∼0.41% of barcode submissions and is more likely to be found than Wolbachia (0.17%). The Torix group of Rickettsia are shown to account for 95% of all unintended amplifications from the genus. A further targeted PCR screen of 1,612 individuals from 169 terrestrial and aquatic invertebrate species identified mostly Torix strains and supports the "aquatic hot spot" hypothesis for Torix infection. Furthermore, the analysis of 1,341 SRA deposits indicates that Torix infections represent a significant proportion of all Rickettsia symbioses found in arthropod genome projects. CONCLUSIONS: This study supports a previous hypothesis that suggests that Torix Rickettsia are overrepresented in aquatic insects. In addition, multiple methods reveal further putative hot spots of Torix Rickettsia infection, including in phloem-feeding bugs, parasitoid wasps, spiders, and vectors of disease. The unknown host effects and transmission strategies of these endosymbionts make these newly discovered associations important to inform future directions of investigation involving the understudied Torix Rickettsia.


Assuntos
Artrópodes , Rickettsia , Animais , Artrópodes/genética , Sequência de Bases , Humanos , Filogenia , Rickettsia/genética , Simbiose
7.
Microb Ecol ; 81(1): 203-212, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32770272

RESUMO

Heritable microbes are an important component of invertebrate biology, acting both as beneficial symbionts and reproductive parasites. Whilst most previous research has focussed on the 'Wolbachia pandemic', recent work has emphasised the importance of other microbial symbionts. In this study, we present a survey of odonates (dragonflies and damselflies) for torix group Rickettsia, following previous research indicating that this clade can be common in other aquatic insect groups. PCR assays were used to screen a broad range of odonates from two continents and revealed 8 of 76 species tested were infected with Rickettsia. We then conducted further deeper screening of UK representatives of the Coenagrionidae damselfly family, revealing 6 of 8 UK coenagrionid species to be positive for torix Rickettsia. Analysis of Rickettsia gene sequences supported multiple establishments of symbiosis in the group. Some strains were shared between UK coenagrionid species that shared mtDNA barcodes, indicating a likely route for mitochondrial introgression between sister species. There was also evidence of coinfecting Rickettsia strains in two species. FISH analysis indicated Rickettsia were observed in the ovarioles, consistent with heritable symbiosis. We conclude that torix Rickettsia represent an important associate of odonates, being found in a broad range of species from both Europe and South America. There is evidence that coinfection can occur, vertical transmission is likely, and that symbiont movement following hybridisation may underpin the lack of 'barcoding gap' between well-established species pairs in the genus. Future work should establish the biological significance of the symbioses observed.


Assuntos
Odonatos/microbiologia , Infecções por Rickettsia/transmissão , Rickettsia/fisiologia , Simbiose/fisiologia , Animais , Código de Barras de DNA Taxonômico , Feminino , Transmissão Vertical de Doenças Infecciosas , Ovário/microbiologia , Rickettsia/classificação , Rickettsia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...