Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2304495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37543837

RESUMO

Ultracompact chip-integrated single-photon sources of collimated beams with polarization-encoded states are crucial for integrated quantum technologies. However, most of currently available single-photon sources rely on external bulky optical components to shape the polarization and phase front of emitted photon beams. Efficient integration of quantum emitters with beam shaping and polarization encoding functionalities remains so far elusive. Here, ultracompact single-photon sources of linearly polarized vortex beams based on chip-integrated quantum emitter-coupled metasurfaces are presented, which are meticulously designed by fully exploiting the potential of nanobrick-arrayed metasurfaces. The authors first demonstrate on-chip single-photon generation of high-purity linearly polarized vortex beams with prescribed topological charges of 0, - 1, and +1. The multiplexing of single-photon emission channels with orthogonal linear polarizations carrying different topological charges are further realized and their entanglement is demonstarated. The work illustrates the potential and feasibility of ultracompact quantum emitter-coupled metasurfaces as a new quantum optics platform for realizing chip-integrated high-dimensional single-photon sources.

2.
Nat Commun ; 14(1): 6253, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803006

RESUMO

Channelling single-photon emission in multiple well-defined directions and simultaneously controlling its polarization characteristics is highly desirable for numerous quantum technology applications. We show that this can be achieved by using quantum emitters (QEs) nonradiatively coupled to surface plasmon polaritons (SPPs), which are scattered into outgoing free-propagating waves by appropriately designed metasurfaces. The QE-coupled metasurface design is based on the scattering holography approach with radially diverging SPPs as reference waves. Using holographic metasurfaces fabricated around nanodiamonds with single Ge vacancy centres, we experimentally demonstrate on-chip integrated efficient generation of two well-collimated single-photon beams propagating along different 15° off-normal directions with orthogonal linear polarizations.

3.
Nano Lett ; 22(7): 2881-2888, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289621

RESUMO

Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.


Assuntos
Nanodiamantes , Termometria , Diagnóstico por Imagem , Portadores de Fármacos , Nanodiamantes/química , Silício
4.
J Chem Phys ; 154(4): 044303, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514119

RESUMO

Germanium vacancy (GeV) centers in diamonds constitute a promising platform for single-photon sources to be used in quantum information technologies. Emission from these color centers can be enhanced by utilizing a cavity that is resonant at the peak emission wavelength. We investigate circular plasmonic Bragg cavities for enhancing the emission from single GeV centers in nanodiamonds (NDs) at the zero phonon line. Following simulations of the enhancement for different configuration parameters, the appropriately designed Bragg cavities together with out-coupling gratings composed of hydrogen silsesquioxane ridges are fabricated around the NDs containing nitrogen vacancy centers deposited on a silica-coated silver surface. We characterize the fabricated configurations and finely tune the cavity parameters to match the GeV emission. Finally, we fabricate the cavity containing a single GeV-ND and compare the total decay-rate before and after cavity fabrication, finding a decay-rate enhancement of ∼5.5 and thereby experimentally confirming the feasibility of emission enhancement with circular plasmonic cavities.

5.
Nanotechnology ; 31(20): 205709, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018241

RESUMO

We have produced two types of synthetic nanodiamonds Si- and Si,P-doped and have characterized the thermal susceptibilities of the spectral band of silicon-vacancy (SiV-) centers at approximately 740 nm in each case. The covered temperature range from 295 to 350 K is of interest for thermometry in biological systems. Comparison of the relative brightness of the Si- and Si,P-doped crystals shows that phosphorous significantly increases average concentration and homogeneity of distribution of SiV- centers in nanodiamonds. Moreover, linear dependence on temperature of the zero-phonon line width in Si-doped crystals is 0.061(2) nm K-1 but is 0.047(3) nm K-1, about 35% smaller in Si,P-doped nanodiamonds. This proves control of SiV- properties with additional chemical doping and close proximity of Si and P atoms.

6.
Inorg Chem ; 57(23): 14895-14903, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411622

RESUMO

A mechanism was established for the formation of nanosized iron carbide particles encapsulated in carbon shells via the processes of ferrocene thermal conversions at high pressures. At a pressure of 8.0 GPa, products of ferrocene decomposition were studied as a function of temperature by X-ray diffraction, Raman and Mössbauer spectroscopy, scanning and transmission electron microscopy. It was shown that the mechanism of formation of the carbon-encapsulated iron carbide nanoparticles at high pressures and temperatures differs qualitatively from the known mechanism of their formation in the gas-phase processes of laser pyrolysis or photolysis of ferrocene. At high pressures and temperatures, the formation of iron carbide nanoparticles occurs not due to the primary growth of pure iron particles and the subsequent dissolution of carbon in iron. Nanoparticles are formed due to the direct fusion of iron-carbon clusters, which are formed at intermediate stages of ferrocene thermal destruction. Then, obtained amorphous iron carbides Fe1- xC x with a high carbon content start to crystallize. Two crystalline carbon-encapsulated forms of iron carbide (Fe7C3 and Fe3C) are the main products of crystallization of the amorphous Fe1- xC x depending on the temperature of the ferrocene treatment.

7.
Light Sci Appl ; 7: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245809

RESUMO

Monolithic integration of quantum emitters in nanoscale plasmonic circuitry requires low-loss plasmonic configurations capable of confining light well below the diffraction limit. We demonstrated on-chip remote excitation of nanodiamond-embedded single quantum emitters by plasmonic modes of dielectric ridges atop colloidal silver crystals. The nanodiamonds were produced to incorporate single germanium-vacancy (GeV) centres, providing bright, spectrally narrow and stable single-photon sources suitable for highly integrated circuits. Using electron-beam lithography with hydrogen silsesquioxane (HSQ) resist, dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) were fabricated on single crystalline silver plates to contain those of deposited nanodiamonds that are found to feature appropriate single GeV centres. The low-loss plasmonic configuration enabled the 532-nm pump laser light to propagate on-chip in the DLSPPW and reach to an embedded nanodiamond where a single GeV centre was incorporated. The remote GeV emitter was thereby excited and coupled to spatially confined DLSPPW modes with an outstanding figure-of-merit of 180 due to a ~six-fold Purcell enhancement, ~56% coupling efficiency and ~33 µm transmission length, thereby opening new avenues for the implementation of nanoscale functional quantum devices.

8.
Sci Rep ; 8(1): 3792, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491410

RESUMO

Nanodidamonds containing colour centres open up many applications in quantum information processing, metrology, and quantum sensing. However, controlling the synthesis of nanodiamonds containing silicon vacancy (SiV) centres is still not well understood. Here we study nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centres. Our results show that nanodiamond growth can be controlled and optimised for different applications.

9.
J Nanobiotechnology ; 14(1): 67, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576904

RESUMO

BACKGROUND: A new type of superparamagnetic nanoparticles with chemical formula Fe7C3@C (MNPs) showed higher value of magnetization compared to traditionally used iron oxide-based nanoparticles as was shown in our previous studies. The in vitro biocompatibility tests demonstrated that the MNPs display high efficiency of cellular uptake and do not affect cyto-physiological parameters of cultured cells. These MNPs display effective magnetocontrollability in homogeneous liquids but their behavior in cytoplasm of living cells under the effect of magnetic field was not carefully analyzed yet. RESULTS: In this work we investigated the magnetocontrollability of MNPs interacting with living cells in permanent magnetic field. It has been shown that cells were capable of capturing MNPs by upper part of the cell membrane, and from the surface of the cultivation substrate during motion process. Immunofluorescence studies using intracellular endosomal membrane marker showed that MNP agglomerates can be either located in endosomes or lying free in the cytoplasm. When attached cells were exposed to a magnetic field up to 0.15 T, the MNPs acquired magnetic moment and the displacement of incorporated MNP agglomerates in the direction of the magnet was observed. Weakly attached or non-attached cells, such as cells in mitosis or after cytoskeleton damaging treatments moved towards the magnet. During long time cultivation of cells with MNPs in a magnetic field gradual clearing of cells from MNPs was observed. It was the result of removing MNPs from the surface of the cell agglomerates discarded in the process of exocytosis. CONCLUSIONS: Our data allow us to conclude for the first time that the magnetic properties of the MNPs are sufficient for successful manipulation with MNP agglomerates both at the intracellular level, and within the whole cell. The structure of the outer shells of the MNPs allows firmly associate different types of biological molecules with them. This creates prospects for the use of such complexes for targeted delivery and selective removal of selected biological molecules from living cells.


Assuntos
Técnicas Citológicas/métodos , Nanopartículas de Magnetita/química , Microscopia de Fluorescência/métodos , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose/fisiologia , Humanos , Espaço Intracelular/química , Magnetismo , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...