Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0246473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571316

RESUMO

We present gridded 8 km-resolution data products of the estimated stem density, basal area, and biomass of tree taxa at Euro-American settlement of the midwestern United States during the middle to late 19th century for the states of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The data come from settlement-era Public Land Survey (PLS) data (ca. 0.8-km resolution) of trees recorded by land surveyors. The surveyor notes have been transcribed, cleaned, and processed to estimate stem density, basal area, and biomass at individual points. The point-level data are aggregated within 8 km grid cells and smoothed using a generalized additive statistical model that accounts for zero-inflated continuous data and provides approximate Bayesian uncertainty estimates. The statistical modeling smooths out sharp spatial features (likely arising from statistical noise) within areas smaller than about 200 km2. Based on this modeling, presettlement Midwestern landscapes supported multiple dominant species, vegetation types, forest types, and ecological formations. The prairies, oak savannas, and forests each had distinctive structures and spatial distributions across the domain. Forest structure varied from savanna (averaging 27 Mg/ha biomass) to northern hardwood (104 Mg/ha) and mesic southern forests (211 Mg/ha). The presettlement forests were neither unbroken and massively-statured nor dominated by young forests constantly structured by broad-scale disturbances such as fire, drought, insect outbreaks, or hurricanes. Most forests were structurally between modern second growth and old growth. We expect the data product to be useful as a baseline for investigating how forest ecosystems have changed in response to the last several centuries of climate change and intensive Euro-American land use and as a calibration dataset for paleoecological proxy-based reconstructions of forest composition and structure for earlier time periods. The data products (including raw and smoothed estimates at the 8-km scale) are available at the LTER Network Data Portal as version 1.0.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Teorema de Bayes , Meio-Oeste dos Estados Unidos , Componentes Aéreos da Planta/crescimento & desenvolvimento , Análise Espaço-Temporal
2.
Ecol Lett ; 24(3): 498-508, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33377307

RESUMO

Forecasts of future forest change are governed by ecosystem sensitivity to climate change, but ecosystem model projections are under-constrained by data at multidecadal and longer timescales. Here, we quantify ecosystem sensitivity to centennial-scale hydroclimate variability, by comparing dendroclimatic and pollen-inferred reconstructions of drought, forest composition and biomass for the last millennium with five ecosystem model simulations. In both observations and models, spatial patterns in ecosystem responses to hydroclimate variability are strongly governed by ecosystem sensitivity rather than climate exposure. Ecosystem sensitivity was higher in models than observations and highest in simpler models. Model-data comparisons suggest that interactions among biodiversity, demography and ecophysiology processes dampen the sensitivity of forest composition and biomass to climate variability and change. Integrating ecosystem models with observations from timescales extending beyond the instrumental record can better understand and forecast the mechanisms regulating forest sensitivity to climate variability in a complex and changing world.


Assuntos
Ecossistema , Árvores , Mudança Climática , Secas , Florestas
6.
Sci Data ; 7(1): 115, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286335

RESUMO

A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.

7.
Ecology ; 100(12): e02856, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31381148

RESUMO

Forest ecosystems in eastern North America have been in flux for the last several thousand years, well before Euro-American land clearance and the 20th-century onset of anthropogenic climate change. However, the magnitude and uncertainty of prehistoric vegetation change have been difficult to quantify because of the multiple ecological, dispersal, and sedimentary processes that govern the relationship between forest composition and fossil pollen assemblages. Here we extend STEPPS, a Bayesian hierarchical spatiotemporal pollen-vegetation model, to estimate changes in forest composition in the upper Midwestern United States from about 2,100 to 300 yr ago. Using this approach, we find evidence for large changes in the relative abundance of some species, and significant changes in community composition. However, these changes took place against a regional background of changes that were small in magnitude or not statistically significant, suggesting complexity in the spatiotemporal patterns of forest dynamics. The single largest change is the infilling of Tsuga canadensis in northern Wisconsin over the past 2,000 yr. Despite range infilling, the range limit of T. canadensis was largely stable, with modest expansion westward. The regional ecotone between temperate hardwood forests and northern mixed hardwood/conifer forests shifted southwestward by 15-20 km in Minnesota and northwestern Wisconsin. Fraxinus, Ulmus, and other mesic hardwoods expanded in the Big Woods region of southern Minnesota. The increasing density of paleoecological data networks and advances in statistical modeling approaches now enables the confident detection of subtle but significant changes in forest composition over the last 2,000 yr.


Assuntos
Ecossistema , Florestas , Teorema de Bayes , Mudança Climática , Meio-Oeste dos Estados Unidos , Minnesota , Incerteza , Estados Unidos , Wisconsin
8.
Sci Total Environ ; 631-632: 1070-1078, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727933

RESUMO

Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study.

9.
Glob Chang Biol ; 24(2): 655-667, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28762590

RESUMO

Insects, diseases, fire and drought and other disturbances associated with global climate change contribute to forest decline and mortality in many parts of the world. Forest decline and mortality related to drought or insect outbreaks have been observed in North American aspen forests. However, little research has been done to partition and estimate their relative contributions to growth declines. In this study, we combined tree-ring width and basal area increment series from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada and attempted to investigate the effect of drought and insect outbreaks on growth decline, and simultaneously partition and quantify their relative contributions. Results indicated that the influence of drought on forest decline was stronger than insect outbreaks, although both had significant effects. Furthermore, the influence of drought and insect outbreaks showed spatiotemporal variability. In addition, our data suggest that insect outbreaks could be triggered by warmer early spring temperature instead of drought, implicating that potentially increased insect outbreaks are expected with continued warming springs, which may further exacerbate growth decline and death in North America aspen mixed forests.


Assuntos
Mudança Climática , Secas , Florestas , Insetos/fisiologia , Taiga , Animais , Canadá , Populus/crescimento & desenvolvimento , Temperatura , Árvores
10.
Front Plant Sci ; 8: 1915, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163627

RESUMO

Understanding the complex interactions of competition, climate warming-induced drought stress, and photosynthetic productivity on the radial growth of trees is central to linking climate change impacts on tree growth, stand structure and in general, forest productivity. Using a mixed modeling approach, a stand-level photosynthetic production model, climate, stand competition and tree-ring data from mixedwood stands in western Canada, we investigated the radial growth response of white spruce [Picea glauca (Moench.) Voss] to simulated annual photosynthetic production, simulated drought stress, and tree and stand level competition. The long-term (~80-year) radial growth of white spruce was constrained mostly by competition, as measured by total basal area, with minor effects from drought. There was no relation of competition and drought on tree growth but dominant trees increased their growth more strongly to increases in modeled photosynthetic productivity, indicating asymmetric competition. Our results indicate a co-limitation of drought and climatic factors inhibiting photosynthetic productivity for radial growth of white spruce in western Canada. These results illustrate how a modeling approach can separate the complex factors regulating both multi-decadal average radial growth and interannual radial growth variations of white spruce, and contribute to advance our understanding on sustainable management of mixedwood boreal forests in western Canada.

11.
Glob Chang Biol ; 23(7): 2887-2902, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28121057

RESUMO

Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests.


Assuntos
Mudança Climática , Secas , Populus/crescimento & desenvolvimento , Canadá , Florestas , Árvores
12.
PLoS One ; 11(12): e0151935, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27935944

RESUMO

BACKGROUND: EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. CHANGES IN FOREST STRUCTURE: We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal/tendências , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Biomassa , Cedrus/fisiologia , Ecossistema , Florestas , Cicutas (Apiáceas)/fisiologia , Humanos , Larix/fisiologia , Meio-Oeste dos Estados Unidos , Filogeografia , Caules de Planta/fisiologia , Quercus/fisiologia , Tilia/fisiologia , Ulmus/fisiologia
13.
PLoS One ; 8(10): e77607, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204891

RESUMO

We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2)>0.67) to represent this complex variation in growth as a function of site, size and competition.


Assuntos
Picea/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Canadá , Ecossistema , Caules de Planta/crescimento & desenvolvimento , Estudos Retrospectivos , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...