Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 5: 11463, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126936

RESUMO

Graphene nanostructures are attracting a great deal of interest because of newly emerging properties originating from quantum confinement effects. We report on using interferometric lithography to fabricate uniform, chip-scale, semiconducting graphene nanomesh (GNM) with sub-10 nm neck widths (smallest edge-to-edge distance between two nanoholes). This approach is based on fast, low-cost, and high-yield lithographic technologies and demonstrates the feasibility of cost-effective development of large-scale semiconducting graphene sheets and devices. The GNM is estimated to have a room temperature energy bandgap of ~30 meV. Raman studies showed that the G band of the GNM experiences a blue shift and broadening compared to pristine graphene, a change which was attributed to quantum confinement and localization effects. A single-layer GNM field effect transistor exhibited promising drive current of ~3.9 µA/µm and ON/OFF current ratios of ~35 at room temperature. The ON/OFF current ratio of the GNM-device displayed distinct temperature dependence with about 24-fold enhancement at 77 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...