Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Ecol ; 35(1): arad073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38193017

RESUMO

Behavioral adjustments to predation risk not only impose costs on prey species themselves but can also have cascading impacts on whole ecosystems. The greater bilby (Macrotis lagotis) is an important ecosystem engineer, modifying the physical environment through their digging activity, and supporting a diverse range of sympatric species that use its burrows for refuge and food resources. The bilby has experienced a severe decline over the last 200 years, and the species is now restricted to ~20% of its former distribution. Introduced predators, such as the feral cat (Felis catus), have contributed to this decline. We used camera traps to monitor bilby burrows at four sites in Western Australia, where bilbies were exposed to varying levels of cat predation threat. We investigated the impact of feral cats on bilby behavior at burrows, particularly during highly vulnerable periods when they dig and clear away soil or debris from the burrow entrance as they perform burrow maintenance. There was little evidence that bilbies avoided burrows that were visited by a feral cat; however, bilbies reduced the time spent performing burrow maintenance in the days following a cat visit (P = 0.010). We found the risk posed to bilbies varied over time, with twice the cat activity around full moon compared with dark nights. Given bilby burrows are an important resource in Australian ecosystems, predation by feral cats and the indirect impact of cats on bilby behavior may have substantial ecosystem function implications.

2.
Sci Total Environ ; 896: 165283, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406694

RESUMO

Killing animals has been a ubiquitous human behaviour throughout history, yet it is becoming increasingly controversial and criticised in some parts of contemporary human society. Here we review 10 primary reasons why humans kill animals, discuss the necessity (or not) of these forms of killing, and describe the global ecological context for human killing of animals. Humans historically and currently kill animals either directly or indirectly for the following reasons: (1) wild harvest or food acquisition, (2) human health and safety, (3) agriculture and aquaculture, (4) urbanisation and industrialisation, (5) invasive, overabundant or nuisance wildlife control, (6) threatened species conservation, (7) recreation, sport or entertainment, (8) mercy or compassion, (9) cultural and religious practice, and (10) research, education and testing. While the necessity of some forms of animal killing is debatable and further depends on individual values, we emphasise that several of these forms of animal killing are a necessary component of our inescapable involvement in a single, functioning, finite, global food web. We conclude that humans (and all other animals) cannot live in a way that does not require animal killing either directly or indirectly, but humans can modify some of these killing behaviours in ways that improve the welfare of animals while they are alive, or to reduce animal suffering whenever they must be killed. We encourage a constructive dialogue that (1) accepts and permits human participation in one enormous global food web dependent on animal killing and (2) focuses on animal welfare and environmental sustainability. Doing so will improve the lives of both wild and domestic animals to a greater extent than efforts to avoid, prohibit or vilify human animal-killing behaviour.


Assuntos
Animais Domésticos , Animais Selvagens , Animais , Humanos , Bem-Estar do Animal , Agricultura , Espécies em Perigo de Extinção
3.
Integr Zool ; 18(2): 299-315, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36065141

RESUMO

Rangelands worldwide have been subject to broadscale modification, such as widespread predator control, introduction of permanent livestock water and altered vegetation to improve grazing. In Australia, these landscape changes have resulted in kangaroos (i.e. large macropods) populations increasing over the past 200 years. Kangaroos are a key contributor to total grazing pressure and in conjunction with livestock and feral herbivores have been linked to land degradation. We used 22 years of aerial survey data to investigate whether the density of 3 macropod species in the southern rangelands of Western Australia was associated with: (i) land use, including type of livestock, total livestock, density of feral goats, type of land tenure, and kangaroo commercial harvest effort; (ii) predator management, including permitted dingo control effort, estimated dingo abundance, and presence of the State Barrier Fence (a dingo exclusion fence); and (iii) environmental variables: ruggedness, rainfall, fractional cover, and total standing dry matter. Red kangaroos (Osphranter rufus) were most abundant in flat, open vegetation, on pastoral land, where area permitted for dingo control was high, and numbers were positively associated with antecedent rainfall with a 12-month delay. Western grey kangaroos (Macropus fuliginosus) were most abundant on flat, agricultural land, but less abundant in areas with high permitted dingo control. Euros (Osphranter robustus) were most abundant in rugged pastoral land with open vegetation, where permitted dingo control was high. While environmental variables are key drivers of landscape productivity and kangaroo populations, anthropogenic factors such as land use and permitted dingo control are strongly associated with kangaroo abundance.


Assuntos
Agricultura , Macropodidae , Animais , Austrália , Cabras , Herbivoria
4.
R Soc Open Sci ; 9(10): 220792, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36312571

RESUMO

Introduction of the domestic cat and red fox has devastated Australian native fauna. We synthesized Australian diet analyses to identify traits of prey species in cat, fox and dingo diets, which prey were more frequent or distinctive to the diet of each predator, and quantified dietary overlap. Nearly half (45%) of all Australian terrestrial mammal, bird and reptile species occurred in the diets of one or more predators. Cat and dingo diets overlapped least (0.64 ± 0.27, n = 24 location/time points) and cat diet changed little over 55 years of study. Cats were more likely to have eaten birds, reptiles and small mammals than foxes or dingoes. Dingo diet remained constant over 53 years and constituted the largest mammal, bird and reptile prey species, including more macropods/potoroids, wombats, monotremes and bandicoots/bilbies than cats or foxes. Fox diet had greater overlap with both cats (0.79 ± 0.20, n = 37) and dingoes (0.73 ± 0.21, n = 42), fewer distinctive items (plant material, possums/gliders) and significant spatial and temporal heterogeneity over 69 years, suggesting the opportunity for prey switching (especially of mammal prey) to mitigate competition. Our study reinforced concerns about mesopredator impacts upon scarce/threatened species and the need to control foxes and cats for fauna conservation. However, extensive dietary overlap and opportunism, as well as low incidence of mesopredators in dingo diets, precluded resolution of the debate about possible dingo suppression of foxes and cats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...