Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(19): 5211-5227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602946

RESUMO

Understanding how human infrastructure and other landscape attributes affect genetic differentiation in animals is an important step for identifying and maintaining dispersal corridors for these species. We built upon recent advances in the field of landscape genetics by using an individual-based and multiscale approach to predict landscape-level genetic connectivity for grizzly bears (Ursus arctos) across ~100,000 km2 in Canada's southern Rocky Mountains. We used a genetic dataset with 1156 unique individuals genotyped at nine microsatellite loci to identify landscape characteristics that influence grizzly bear gene flow at multiple spatial scales and map predicted genetic connectivity through a matrix of rugged terrain, large protected areas, highways and a growing human footprint. Our corridor-based modelling approach used a machine learning algorithm that objectively parameterized landscape resistance, incorporated spatial cross validation and variable selection and explicitly accounted for isolation by distance. This approach avoided overfitting, discarded variables that did not improve model performance across withheld test datasets and spatial predictive capacity compared to random cross-validation. We found that across all spatial scales, geographic distance explained more variation in genetic differentiation in grizzly bears than landscape variables. Human footprint inhibited connectivity across all spatial scales, while open canopies inhibited connectivity at the broadest spatial scale. Our results highlight the negative effect of human footprint on genetic connectivity, provide strong evidence for using spatial cross-validation in landscape genetics analyses and show that multiscale analyses provide additional information on how landscape variables affect genetic differentiation.


Assuntos
Ecossistema , Ursidae , Humanos , Animais , Ursidae/genética , Deriva Genética , Fluxo Gênico
2.
Ecol Evol ; 13(4): e9965, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038529

RESUMO

The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade-offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual-based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker-specific mortality, and variation in age-at-maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age-at-maturity, greater AMS-specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.

3.
J Hered ; 114(4): 341-353, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36738446

RESUMO

The complexity of global anthropogenic change makes forecasting species responses and planning effective conservation actions challenging. Additionally, important components of a species' adaptive capacity, such as evolutionary potential, are often not included in quantitative risk assessments due to lack of data. While genomic proxies for evolutionary potential in at-risk species are increasingly available, they have not yet been included in extinction risk assessments at a species-wide scale. In this study, we used an individual-based, spatially explicit, dynamic eco-evolutionary simulation model to evaluate the extinction risk of an endangered desert songbird, the southwestern willow flycatcher (Empidonax traillii extimus), in response to climate change. Using data from long-term demographic and habitat studies in conjunction with genome-wide ecological genomics research, we parameterized simulations that include 418 sites across the breeding range, genomic data from 225 individuals, and climate change forecasts spanning 3 generalized circulation models and 3 emissions scenarios. We evaluated how evolutionary potential, and the lack of it, impacted population trajectories in response to climate change. We then investigated the compounding impact of drought and warming temperatures on extinction risk through the mechanism of increased nest failure. Finally, we evaluated how rapid action to reverse greenhouse gas emissions would influence population responses and species extinction risk. Our results illustrate the value of incorporating evolutionary, demographic, and dispersal processes in a spatially explicit framework to more comprehensively evaluate the extinction risk of threatened and endangered species and conservation actions to promote their recovery.


Assuntos
Salix , Aves Canoras , Animais , Mudança Climática , Melhoramento Vegetal , Espécies em Perigo de Extinção , Ecossistema , Extinção Biológica , Aves Canoras/genética
4.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120121

RESUMO

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Assuntos
Doença de Chagas/epidemiologia , Doença de Chagas/genética , Rhodnius/genética , Adaptação Biológica/genética , Animais , Vetores de Doenças , Ecossistema , Equador/epidemiologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Fluxo Gênico , Insetos Vetores/genética , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica , Rhodnius/patogenicidade , Transcriptoma/genética , Trypanosoma cruzi/genética
5.
Mol Ecol Resour ; 20(2): 605-615, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31769930

RESUMO

We implemented multilocus selection in a spatially-explicit, individual-based framework that enables multivariate environmental gradients to drive selection in many loci as a new module for the landscape genetics programs, CDPOP and CDMetaPOP. Our module simulates multilocus selection using a linear additive model, providing a flexible platform to evaluate a wide range of genotype-environment associations. Importantly, the module allows simulation of selection in any number of loci under the influence of any number of environmental variables. We validated the module with individual-based selection simulations under Wright-Fisher assumptions. We then evaluated results for simulations under a simple landscape selection model. Next, we simulated individual-based multilocus selection across a complex selection landscape with three loci linked to three different environmental variables. Finally, we demonstrated how the program can be used to simulate multilocus selection under varying selection strengths across different levels of gene flow in a landscape genetics framework. This new module provides a valuable addition to the study of landscape genetics, allowing for explicit evaluation of the contributions and interactions between gene flow and selection-driven processes across complex, multivariate environmental and landscape conditions.


Assuntos
Loci Gênicos , Genética Populacional , Modelos Genéticos , Simulação por Computador , Fluxo Gênico , Genótipo , Seleção Genética
6.
Behav Ecol ; 30(2): 528-540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971861

RESUMO

Patterns of dispersal behavior are often driven by the composition and configuration of suitable habitat in a matrix of unsuitable habitat. Interactions between animal behavior and landscapes can therefore influence population dynamics, population and species distributions, population genetic structure, and the evolution of behavior. Spatially explicit individual-based models (IBMs) are ideal tools for exploring the effects of landscape structure on dispersal. We developed an empirically parameterized IBM in the modeling framework SEARCH to simulate dispersal of translocated American martens in Wisconsin. We tested the hypothesis that a time-limited disperser should be willing to settle in lower quality habitat over time. To evaluate model performance, we used a pattern-oriented modeling approach. Our best model matched all empirical dispersal patterns (e.g., dispersal distance) except time to settlement. This model incorporated a required search phase as well as the mechanism for declining habitat selectivity over time, which represents the first demonstration of this hypothesis for a vertebrate species. We suggest that temporal plasticity in habitat selectivity allows individuals to maximize fitness by making a tradeoff between habitat quality and risk of mortality. Our IBM is pragmatic in that it addresses a management need for a species of conservation concern. However, our model is also paradigmatic in that we explicitly tested a theory of dispersal behavior. Linking these 2 approaches to ecological modeling can further the utility of individual-based modeling and provide direction for future theoretical and empirical work on animal behavior.

7.
Behav Processes ; 94: 76-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23305800

RESUMO

Animals that are potential prey do not respond equally to direct and indirect cues related to risk of predation. Based on differential responses to cues, three hypotheses have been proposed to explain spatial variation in vigilance behavior. The predator-vigilance hypothesis proposes that prey increase vigilance where there is evidence of predators. The visibility-vigilance hypothesis suggests that prey increase vigilance where visibility is obstructed. Alternatively, the refuge-vigilance hypothesis proposes that prey may perceive areas with low visibility (greater cover) as refuges and decrease vigilance. We evaluated support for these hypotheses using the kit fox (Vulpes macrotis), a solitary carnivore subject to intraguild predation, as a model. From 2010 to 2012, we used infrared-triggered cameras to record video of kit fox behavior at water sources in Utah, USA. The refuge-vigilance hypothesis explained more variation in vigilance behavior of kit foxes than the other two hypotheses (AICc model weight=0.37). Kit foxes were less vigilant at water sources with low overhead cover (refuge) obstructing visibility. Based on our results, the predator-vigilance and visibility-vigilance hypotheses may not be applicable to all species of prey. Solitary prey, unlike gregarious prey, may use areas with concealing cover to maximize resource acquisition and minimize vigilance.


Assuntos
Comportamento Animal , Sinais (Psicologia) , Meio Ambiente , Raposas , Comportamento Predatório , Água , Animais , Modelos Lineares , Risco , Utah , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...