Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 15(23): 14019-14038, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38085649

RESUMO

Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.


Assuntos
Hipertensão , Receptor IGF Tipo 1 , Animais , Ratos , Adipócitos/metabolismo , Envelhecimento , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
2.
Chin J Physiol ; 66(4): 189-199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635478

RESUMO

Lung cancer is the most common malignant cancer worldwide. Combination therapies are urgently needed to increase patient survival. Calycosin is a phytoestrogen isoflavone that has been reported previously to inhibit tumor cell growth, although its effects on lung cancer remain unclear. The aim of this study was to investigate the effects of calycosin on cell proliferation and apoptosis of gemcitabine-resistant lung cancer cells. Using calycosin to treat human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) and examine the effects on the cells. Cultured human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) were treated with increasing concentrations of calycosin. Cell viability and apoptosis were studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide, flow cytometry, and TUNEL assays. Western blots were used to measure the expression levels of proliferation-related proteins and cancer stem cell proteins in CL1-0 GEMR cells. The results showed that calycosin treatment inhibited cell proliferation, decreased cell migration ability, and suppressed cancer stem cell properties in CL1-0 GEMR cells. Interestingly, in CL1-0 GEMR cells, calycosin treatment not only increased LDOC1 but also decreased GNL3L/NFκB protein levels and mRNA levels, in concentration-dependent manners. We speculate that calycosin inhibited cell proliferation of the gemcitabine-resistant cell line through regulating the LDOC1/GNL3L/NFκB pathway.


Assuntos
Isoflavonas , Neoplasias Pulmonares , Humanos , Gencitabina , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , NF-kappa B , Isoflavonas/farmacologia , Proliferação de Células , Apoptose , Proteínas Nucleares/farmacologia , Proteínas Supressoras de Tumor/farmacologia , Proteínas de Ligação ao GTP/farmacologia
3.
Environ Toxicol ; 37(11): 2793-2803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959841

RESUMO

Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease that results in joint destruction and disability in the adult population. RA is characterized by the accumulation and proliferation of fibroblast-like synoviocytes. Many pro-inflammatory mediators are associated with RA, such as interleukin (IL)-1ß, IL-6, IL-17, cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB). Furthermore, IL-17 upregulates the production of other pro-inflammatory mediators, including IL-1ß and IL-6, and promotes the recruitment of neutrophils in RA. Artemisia argyi, a traditional Chinese herbal medicine, is used for the treatment of diseases associated with inflammation and microbial infections. In this study, synoviocytes (HIG-82) were treated with varying doses of A. argyi extract (AAE) following IL-17A stimulation. Proliferation of the IL-17A-stimulated cells was increased compared to that of the non-stimulated control cells. However, cell proliferation decreased significantly in a dose-dependent manner following AAE treatment. Treatment of IL-17A-stimulated cells with AAE resulted in decreased levels of phosphorylated (p)-NF-κB, p-IκB-α, and COX-2. Enzyme-linked immunosorbent assay results showed that IL-1ß and IL-6 levels were increased in the IL-17A-stimulated group but decreased in the AAE treatment group. Additionally, we found that AAE facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of heme oxygenase-1. Moreover, AAE did not attenuate IL-17A-induced inflammatory mediator production in the presence of ML385, an Nrf2-specific inhibitor. These results suggest that the downregulation of expression of pro-inflammatory cytokines and the transcription factor NF-κB by AAE may be a potential therapeutic strategy for reducing inflammation associated with RA.


Assuntos
Artemisia , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Sinoviócitos , Artemisia/metabolismo , Artrite Reumatoide/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Fibroblastos/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Sinoviócitos/metabolismo
4.
Mol Cell Biochem ; 477(12): 2863-2869, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35691981

RESUMO

Urothelial bladder cancer is rapidly spreading across Western countries, and therapy has shown little-to-moderate effects on bladder cancer. Thus, focusing on curbing cancer incidence has become crucial. The aim of the present study was to investigate the anticancer effects of Tannic acid (TA) in human bladder cancer. UMUC3 bladder cancer cells were treated with different concentrations of TA (0-100 µM) and tested for cell viability, colony formation, and apoptosis. The involvement of the phosphoinositide-3 kinase (PI3K)/Akt pathway in the action of TA was examined. TA treatment significantly inhibited the viability and increased percentage of apoptotic cells, thereby decreasing antiapoptotic proteins (BCL2, MCL-1, and BCL-XL) expression, resulting in the Caspase-3 activation. TA treatment decreased stem cell markers expression such as SOX2, OCT4, and NANOG. Additionally, TA treatment significantly reduced the phosphorylation levels of Akt in bladder cancer cells. Our study demonstrates the growth inhibitory effects of TA in bladder cancer cells, and highlights its potential as an anticancer agent for bladder cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Taninos/farmacologia , Taninos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
5.
J Biochem Mol Toxicol ; 36(9): e23128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35698875

RESUMO

Hypertension is a common chronic cardiovascular disease reported among both men and women. Hypertension in males affects the testis and reproduction function; however, the pathogenesis is poorly understood. Rapamycin has been reported to have a variety of beneficial pharmacological effects; however, high-doses rapamycin does have side effects such as immunosuppression. The present study investigates whether low-dose rapamycin can reduce the damage caused by hypertension to the testis of spontaneously hypertensive rats (SHRs) and further examines molecular mechanism of low-dose rapamycin in preventing testicular toxicity induced by angiotensin II (Ang II). Low rapamycin dose restores the testicle size, histological alterations, 3ß-hydroxysteroid dehydrogenase (3ß-HSD) expression, and prevents apoptosis in SHR rats. Ang II downregulates angiotensin-converting enzyme-2 (ACE2) expression through AT1R, p-ERK, and MAS receptor in LC-540 Leydig cells in a dose-dependent manner. Low doses of rapamycin effectively upregulate steroidogenic enzymes, steroidogenic acute regulatory protein and 3ß-HSD expression in Leydig cells. Rapamycin upregulates ACE2 expression through p-PKAc and p-PI3k in Ang II-treated cells. Further, rapamycin curbs mitochondrial superoxide generation and depleted mitochondrial membrane potential induced by Ang II through activation of Nrf2-mediated Gpx4 and superoxide dismutase 2 expression. Our results revealed the involvement of ACE2, AT1R, AT2R, PKAc, and oxidative stress in Ang-II-induced testicular toxicity, suggesting low-dose rapamycin could be a potential therapeutic candidate to attenuate testicular toxicity.


Assuntos
Angiotensina II , Hipertensão , Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Feminino , Humanos , Hidroxiesteroide Desidrogenases , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Ratos , Ratos Endogâmicos SHR , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Superóxidos
6.
Phytomedicine ; 104: 154250, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752074

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder involving the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cellular clearance mechanisms, including the autophagy-lysosome pathway, are commonly affected in the pathogenesis of PD. The lysosomal Ca2+ channel mucolipin TRP channel 1 (TRPML1) is one of the most important proteins involved in the regulation of autophagy. Artemisia argyi Lev. et Vant., is a traditional Chinese herb, that has diverse therapeutic properties and is used to treat patients with skin diseases and oral ulcers. However, the neuroprotective effects of A. argyi are not explored yet. HYPOTHESIS: This study aims is to investigate the neuroprotective effects of A. argyi in promoting the TRPML1-mediated autophagy/mitophagy-enhancing effect METHODS: In this study, we used 1-methyl-4-phenyl-pyridinium (MPP+)-induced PD model established in an SH-SY5Y human neuroblastoma cell line as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice. MTT assay was conducted to measure the cell viability and further MitoSoX and DCFDA assay were used to measure the ROS. Western blot analysis was used to access levels of TRPML1, p-DRP1 (ser616), p-AKT, PI3K, and ß-catenin, Additionally, IF and IHC analysis to investigate the expression of TRPML1, LC3B, ß-catenin, TH+, α-synuclein. Mitotracker stain was used to check mitophagy levels and a lysosomal intracellular activity kit was used to measure the lysosomal dysfunction. Behavioral studies were conducted by rotarod and grip strength experiments to check motor functions. RESULTS: In our in vitro study, A. argyi rescued the MPP+-induced loss of cell viability and reduced the accumulation of mitochondrial and total reactive oxygen species (ROS). Subsequently, it increased the expression of TRPML1 protein, thereby inducing autophagy, which facilitated the clearance of toxic accumulation of α-synuclein. Furthermore, A. argyi played a neuroprotective role by activating the PI3K/AKT/ß-catenin cell survival pathway. MPP+-mediated mitochondrial damage was overcome by upregulation of mitophagy and downregulation of the mitochondrial fission regulator p-DRP1 (ser616) in SH-SY5Y cells. In the in vivo study, A. argyi ameliorated impaired motor function and rescued TH+ neurons in the SNpc region. Similar to the results of the in vitro study, TRPML1, LC3B, and ß-catenin expression was enhanced in the SNpc region in the A. argyi-treated mice brain. CONCLUSION: Thus, our results first demonstrate that A. argyi can exert neuroprotective effects by stimulating TRPML1 and rescuing neuronal cells by boosting autophagy/mitophagy and upregulating a survival pathway, suggesting that A. argyi can further be exploited to slow the progression of PD.


Assuntos
Artemisia , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Canais de Potencial de Receptor Transitório/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Autofagia , Neurônios Dopaminérgicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , beta Catenina/metabolismo
7.
Environ Toxicol ; 37(8): 2096-2102, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35583127

RESUMO

Diabetic nephropathy is a serious chronic complication affecting at least 25% of diabetic patients. Hyperglycemia associated advanced glycation end-products (AGEs) increase tubular epithelial-myofibroblast transdifferentiation (TEMT) and extracellular matrix synthesis and thereby causes renal fibrosis. The chalcone isoliquiritigenin, found in many herbs of Glycyrrhiza family, is known for potential health-promoting effects. However, their effects on AGE-associated renal proximal tubular fibrosis are not known yet. In this study, the effect of isoliquiritigenin on AGE-induced renal proximal tubular fibrosis was determined in cultured HK-2 cell line. The results show that 200 µg/mL of AGE-induced TEMT and the formed myofibroblasts synthesized collagen to increase extracellular matrix formation thereby lead to renal tubular fibrosis. However, treatment with 200 nM of isoliquiritigenin considerably inhibited the TEMT and suppressed the TGFß/STAT3 mechanism to inhibit collagen secretion. Therefore, isoliquiritigenin effectively suppressed AGE-induced renal tubular fibrosis.


Assuntos
Chalconas , Nefropatias Diabéticas , Chalconas/farmacologia , Colágeno/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais , Fibrose , Produtos Finais de Glicação Avançada/metabolismo , Humanos
8.
Environ Toxicol ; 37(8): 1979-1987, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35442559

RESUMO

Diabetic neuropathy is a common complication of diabetes mellitus, posing a challenge in treatment. Previous studies have indicated the protective role of mesenchymal stem cells against several disorders. Although they can repair nerve injury, their key limitation is that they reduce viability under stress conditions. We recently observed that overactivation of the carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP) considerably rescued cell viability under hyperglycemic stress and played an essential role in promoting the beneficial effects of Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Thus, the present study was designed to unveil the protective effects of CHIP-overexpressing WJMSCs against neurodegeneration using in vivo animal model based study. In this study, western blotting observed that CHIP-overexpressing WJMSCs could rescue nerve damage observed in streptozotocin-induced diabetic rats by activating the AMPKα/AKT and PGC1α/SIRT1 signaling pathway. In contrast, these signaling pathways were downregulated upon silencing CHIP. Furthermore, CHIP-overexpressing WJMSCs inhibited inflammation induced in the brains of diabetic rats by suppressing the NF-κB, its downstream iNOS and cytokines signaling nexus and enhancing the antioxidant enzyme system. Moreover, TUNEL assay demonstrated that CHIP carrying WJMSCs suppressed the apoptotic cell death induced in STZ-induced diabetic group. Collectively, our findings suggests that CHIP-overexpressing WJMSCs might exerts beneficial effects, which may be considered as a therapeutic strategy against diabetic neuropathy complications.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/prevenção & controle , Ratos , Estreptozocina/metabolismo , Estreptozocina/farmacologia
9.
Environ Toxicol ; 37(4): 858-867, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34990515

RESUMO

Oxidative stress-induced brain cell damage is a crucial factor in the pathogenesis of reactive oxygen species (ROS)-associated neurological diseases. Further, studies show that astrocytes are an important immunocompetent cell in the brain and play a potentially significant role in various neurological diseases. Therefore, elimination of ROS overproduction might be a potential strategy for preventing and treating neurological diseases. Accumulating evidence indicates that calycosin, a main active ingredient in the Chinese herbal medicine Huangqi (Radix Astragali Mongolici), is a potential therapeutic candidate with anti-inflammation and/or anticancer effects. Here, we investigated the protective effect of calycosin in brain astrocytes by mimicking in vitro oxidative stress using H2 O2 . The results revealed that H2 O2 significantly induced ROS and inflammatory factor (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß) production, whereas post-treatment with calycosin dramatically and concentration-dependently suppressed H2 O2 -induced damage by enhancing cell viability, repressing ROS and inflammatory factor production, and increasing superoxide dismutase (SOD) expression. Additionally, we found that calycosin facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of antioxidant molecules (heme oxygenase [HO]-1 and SOD) following H2 O2 treatment. Moreover, calycosin did not attenuated H2 O2 -induced astrocyte damage and ROS production in the presence of the ML385 (a Nrf2-specific inhibitor) and following Nrf2 silencing. Furthermore, calycosin failed to increase Akt phosphorylation and mitigate H2 O2 -induced astrocyte damage in the presence of the LY294002 (a selective phosphatidylinositol 3-kinase inhibitor), indicating that calycosin-mediated regulation of oxidative-stress homeostasis involved Akt/Nrf2/HO-1 signaling. These findings demonstrated that calycosin protects against oxidative injury in brain astrocytes by regulating oxidative stress through the AKT/Nrf2/HO-1 signaling pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Astrócitos/metabolismo , Heme Oxigenase-1/metabolismo , Isoflavonas , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
J Food Biochem ; 46(5): e14041, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35064587

RESUMO

Growing evidences indicate that high glucose toxicity-associated fibrotic effects play a pivotal role in diabetic nephropathy (DN). Tubular epithelial-myofibroblast transdifferentiation is a major hallmark of renal fibrosis event under diabetic stress. Roots of Glycyrrhiza uralensis (Radix glycyrrhizae) used as a sweetener and traditional Chinese medicine possess high potential for renal protection. In this study, a cell model for high glucose (HG) injury with HK-2 renal proximal tubular epithelial cell line and a type-II-diabetes model with Apoeem1/Narl /Narl mice was established and the beneficial effects of aqueous R. glycyrrhizae extract (RGE) was investigated. RGE-induced regulation on the high glucose-induced excessive production of TGF-ß1 and the Smad/Stat3 mechanisms of renal fibrosis were determined. HK-2 cells were challenged with 45 mM of high glucose for 48 hr. Following high glucose challenge, the cells were treated with 0.5, 1, and 1.5 mg/ml concentrations of RGE. The effect of RGE on DN was determined using high fructose diet-induced type-II-diabetes in Apoeem1/Narl /Narl mice models. Our results showed that RGE suppressed the expression of HG-induced TGFß signaling and associated fibrosis mechanism better than the pharmacological drug acarbose. These data suggest that RGE as a potential herbal supplement in attenuating fibrosis-associated diabetic nephropathy and a potential agent in diabetes treatments.


Assuntos
Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Animais , Linhagem Celular , Transdiferenciação Celular , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Glucose , Glycyrrhiza uralensis/química , Humanos , Camundongos , Miofibroblastos/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
11.
Chem Biol Interact ; 354: 109810, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34999050

RESUMO

Habitual chewing of the areca nut increases the risk of mortality owing to cardiovascular disease, but few reports have revealed the cardiotoxicity mechanism of the areca nut. Arecoline has been reported to be the primary toxic constituent in the areca nut. In order to study the acute cardiotoxicity of the areca nut in the development of pathologic heart hypertrophy, we induced heart injury in rats using arecoline. Arecoline at a low dosage (5 mg/kg/day) or a high dosage (50 mg/kg/day) was intraperitoneally injected to Sprague-Dawley rats for 21 days. The change of heart function and biochemical pathways were investigated with echocardiography and Western blot. The results were presented that heart functions were weakened by arecoline stimulation, and western blotting analysis revealed an elevation in BNP levels in the heart after arecoline exposure. Arecoline induced IL-6-mediated activation of the MEK5/ERK5 and JAK2/STAT3 pathways, as well as mitogen-activated protein kinase signaling cascades. Further, arecoline increased the calcineurin and NFATc3 levels in the heart. In summary, our results suggest that arecoline causes significantly cardiotoxicity and heart damage by inducing several hypertrophy-related signaling pathways, including IL-6-induced MEK5/ERK5, JAK2/STAT3, mitogen-activated protein kinases, and calcineurin signaling pathways. The study elucidated, for the first time, the possible cardiac hypertrophy mechanisms underlying the cardiotoxicity of the areca nut.


Assuntos
Arecolina
12.
J Ethnopharmacol ; 284: 114728, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634367

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Solanum nigrum, commonly known as Makoi or black shade has been traditionally used in Asian countries and other regions of world to treat liver disorders, diarrhoea, inflammatory conditions, chronic skin ailments (psoriasis and ringworm), fever, hydrophobia, painful periods, eye diseases, etc. It has been observed that S. nigrum contains substances, like steroidal saponins, total alkaloid, steroid alkaloid, and glycoprotein, which show anti-tumor activity. However; there is no scientific evidence of the efficacy of S. nigrum in the treatment of cardiac hypertrophy. AIM: To investigate the ability of S. nigrum to attenuate Angiotensin II - induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation. MATERIALS AND METHODS: Cardiomyoblast cells (H9c2) were challenged with 100 nM Angiotensin-II (AngII) for 24 h and were then treated with different concentration of S.nigrum or Calphostin C for 24 h. The hypertrophic effect in cardiomyoblast cells were determined by immunofluorescence staining and the modulations in hypertrophic protein marker along with Protein Kinase C-ζ, MEL18, HSF2, and Insulin like growth factor II (IGFIIR), markers were analyzed by western blotting. In vivo experiments were performed using 12 week old male Wistar Kyoto rats (WKY) and Spontaneously hypertensive rats (SHR) separated into five groups. [1]Control WKY, [2] WKY -100 mg/kg of S.nigrum treatment, [3] SHR, [4] SHR-100 mg/kg of S.nigrum treatment, [5] SHR-300 mg/kg of S.nigrum treatment. S. nigrum was administered intraperitoneally for 8 week time interval. RESULTS: Western blotting results indicate that S. nigrum significantly attenuates AngII induced cardiac hypertrophy. Furthermore, actin staining confirmed the ability of S. nigrum to ameliorate AngII induced cardiac hypertrophy. Moreover, S. nigrum administration suppressed the hypertrophic signaling mediators like Protein Kinase C-ζ, Mel-18, and IGFIIR in a dose-dependent manner and HSF2 activation (restore deSUMOlyation) that leads to downregulation of IGF-IIR expression. Additionally in vivo experiments demonstrate the reduced heart sizes of S. nigrum treated SHRs rats when compared to control WKY rats. CONCLUSION: Collectively, the data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Extratos Vegetais/farmacologia , Solanum nigrum/química , Angiotensina II , Animais , Cardiotônicos/administração & dosagem , Cardiotônicos/isolamento & purificação , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico/metabolismo , Hipertensão/tratamento farmacológico , Masculino , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/patologia , Extratos Vegetais/administração & dosagem , Proteína Quinase C/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor IGF Tipo 2/metabolismo , Fatores de Transcrição/metabolismo
13.
Mol Cell Biochem ; 477(1): 143-152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586566

RESUMO

The heart is a very dynamic pumping organ working perpetually to maintain a constant blood supply to the whole body to transport oxygen and nutrients. Unfortunately, it is also subjected to various stresses based on physiological or pathological conditions, particularly more vulnerable to damages caused by oxidative stress. In this study, we investigate the molecular mechanism and contribution of IGF-IIRα in endoplasmic reticulum stress induction in the heart under doxorubicin-induced cardiotoxicity. Using in vitro H9c2 cells, in vivo transgenic rat cardiac tissues, siRNAs against CHOP, chemical ER chaperone PBA, and western blot experiments, we found that IGF-IIRα overexpression enhanced ER stress markers ATF4, ATF6, IRE1α, and PERK which were further aggravated by DOX treatment. This was accompanied by a significant perturbation in stress-associated MAPKs such as p38 and JNK. Interestingly, PARKIN, a stress responsive cellular protective mediator was significantly downregulated by IGF-IIRα concomitant with decreased expression of ER chaperone GRP78. Furthermore, ER stress-associated pro-apoptotic factor CHOP was increased considerably in a dose-dependent manner followed by elevated c-caspase-12 and c-caspase-3 activities. Conversely, treatment of H9c2 cells with chemical ER chaperone PBA or siRNA against CHOP abolished the IGF-IIRα-induced ER stress responses. Altogether, these findings suggested that IGF-IIRα contributes to ER stress induction and inhibits cellular stress coping proteins while increasing pro-apoptotic factors feeding into a cardio myocyte damage program that eventually paves the way to heart failure.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Miocárdio/metabolismo , Receptor IGF Tipo 2/metabolismo , Animais , Linhagem Celular , Citotoxinas/efeitos adversos , Citotoxinas/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Retículo Endoplasmático/genética , Ratos , Ratos Transgênicos , Receptor IGF Tipo 2/genética
14.
Open Life Sci ; 16(1): 1182-1192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761109

RESUMO

The areca nut is one of the most commonly consumed psychoactive substances worldwide, with an estimated consumption by approximately 10% of the world's population, especially in some regions of South Asia, East Africa, and the tropical Pacific. Arecoline, the major areca nut alkaloid, has been classified as carcinogenic to humans as it adversely affects various organs, including the brain, heart, lungs, gastrointestinal tract, and reproductive organs. Earlier studies have established a link between areca nut chewing and cardiac arrhythmias, and yet research pertaining to the mechanisms underlying cardiotoxicity caused by arecoline is still preliminary. The main purpose of this study is to test the hypothesis that arecoline causes cardiac fibrosis through transforming growth factor-ß (TGF-ß)/Smad-mediated signaling pathways. Male Wistar rats were injected intraperitoneally with low (5 mg/kg/day) or high (50 mg/kg/day) doses of arecoline for 3 weeks. Results from Masson's trichrome staining indicated that arecoline could induce cardiac fibrosis through collagen accumulation. Western blot analysis showed that TGF-ß and p-Smad2/3 protein expression levels were markedly higher in the arecoline-injected rat hearts than in those of the control rats. Moreover, arecoline upregulated other fibrotic-related proteins, including SP1-mediated connective tissue growth factor expression. Tissue-type plasminogen activator and its inhibitor, plasminogen activator inhibitor, and matrix metalloproteinase (MMP) 9 were upregulated, and the inhibitor of MMP9 was downregulated. This study provides novel insight into the molecular mechanisms underlying arecoline-induced cardiac fibrosis. Taken together, the areca nut is a harmful substance, and the detrimental effects of arecoline on the heart are similar to that caused by oral submucous fibrosis.

15.
Environ Toxicol ; 36(12): 2475-2483, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34495567

RESUMO

The insulin-like growth factor II receptor (IGF-IIR) induces myocardial hypertrophy under various pathological conditions like diabetes and hypertension via G protein receptors like Gαq or Gαs. Increased expression of the ligand IGF II and IGF-IIR induces pathological hypertrophy through downstream signaling mediators such as calcineurin, nuclear factor of activated T cells 3 and calcium-calmodulin (CaM)-dependent kinase II (CaMKII)-histone deacetylase 4 (HDAC4). The dried stigma of Crocus sativus L. (saffron) has a long repute as a traditional medicine against various disorders. In the present study, we have investigated whether C. sativus extract (CSE) canameliorate Leu27 IGF-II triggered hypertrophy and have elucidated the underlying mechanism of protection. Additionally, the effects of oleic acid (OA), an activator of calcineurin and CaMKII was investigated thereof. The results demonstrate that CSE can ameliorate Leu27 IGF-II-induced hypertrophy seemingly through regulation of calcineurin-NFAT3 and CaMKII-HDAC4 signaling cascade.


Assuntos
Calcineurina , Crocus , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Hipertrofia , Fator de Crescimento Insulin-Like II/genética , Miócitos Cardíacos
16.
Aging (Albany NY) ; 13(13): 17536-17547, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233296

RESUMO

Pathological manifestations in either heart or kidney impact the function of the other and form the basis for the development of cardiorenal syndrome. However, the mechanism or factors involved in such scenario are not completely elucidated. In our study, to find the correlation between late fetal gene expression in diabetic hearts and their influence on diabetic nephropathy, we created a rat model with cardiac specific overexpression of IGF-IIRα, which is an alternative splicing variant of IGFIIR, expressed in pathological hearts. In this study, transgenic rats over expressing cardiac specific IGF-IIRα and non-transgenic animal models established in SD rats were administered with single dose of streptozotocin (STZ, 55 mg/Kg) to induce Type I diabetes. The correlation between IGF-IIRα and kidney damages were further determined based on their intensity of damage in the kidneys. The results show that cardiac specific overexpression of IGF-IIRα elevates the diabetes associated inflammation and morphological changes in the kidneys. The diabetic transgenic rats showed advancement in the pathological features such a renal tubular damage, collagen accumulation and enhancement in STAT3 associated mechanism of renal fibrosis. The results therefore show that that IGF-IIRα expression in the heart during pathological condition may worsen symptoms of diabetic nephropathy in rats.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Receptor IGF Tipo 2/genética , Animais , Apoptose/genética , Colágeno/metabolismo , Fibrose , Regulação da Expressão Gênica , Rim/patologia , Túbulos Renais/patologia , Masculino , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Fator de Transcrição STAT3/genética
17.
Free Radic Biol Med ; 173: 70-80, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298092

RESUMO

Accumulating studies have demonstrated the protective roles of mesenchymal stem cells against several disorders. However, one of their crucial limitations is reduced viability under stress conditions, including the hyperglycemia induced by diabetes. The molecular mechanisms involved in diabetes-induced kidney injuries are not fully elucidated. In this study, we found that high glucose (HG) reduced human proximal tubular epithelial cell viability. Further, hyperglycemia induced oxidative stress-mediated apoptosis and fibrosis in HK-2 cells via activation of the mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal kinase JNK and p38 kinase. Carboxyl terminus of HSP70 interacting protein (CHIP) overactivation considerably rescued cell viability under HG stress. Moreover, Western blot analysis, flow cytometry, and MitoSOX staining revealed that hyperglycemia-induced mitochondrial oxidative stress production and apoptosis were attenuated in CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Co-culture with CHIP-expressing WJMSCs maintained HK-2 cell viability, and inhibited apoptosis and fibrosis by attenuating HG-induced ROS-mediated MAPK activation. CHIP-overexpressing WJMSCs also rescued the decreased kidney weight and hyperglycemia-induced kidney damage observed in streptozotocin-induced diabetic rats. Cumulatively, the current research findings demonstrate that CHIP suppresses hyperglycemia-induced oxidative stress and confers resistance to MAPK-induced apoptosis and fibrosis, and suggests that CHIP protects WJMSCs and the high quality WJMSCs have therapeutic effects against diabetes-induced kidney injuries.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Rim/metabolismo , Estresse Oxidativo , Ratos
18.
Environ Toxicol ; 36(9): 1873-1879, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089567

RESUMO

Epimedium, is used traditionally in Chinese medicine to treat infertility problems. In this study, we establish the cell model to elucidate the protective effect of epimedium against ES by analyzing the molecular relationship between mitochondrial dynamics and steroidogenesis and to explore the molecular mechanism focusing on mitochondria function relating to fertility. ES induced ROS accumulation in mitochondria and the epimedium treatment significantly reduced the ROS accumulation. Furthermore, mitochondria morphology was restored to elongated shape following epimedium treatment. Epimedium treatment promoted dynamin-associated protein 1 (Drp1)-mediated steroidogenesis pathway by upregulating PKA, CREB, Drp1, and StAR protein expression in response to ES exposure in Leydig cells. Moreover, it was also identified that, CREB plays an important role in epimedium activation in Drp1-mediated steroidogenesis signaling pathway by increasing, phospho-CREB expression in nucleus. Testosterone level is decreased in ES-exposed cells; however, the testosterone level was increased after epimedium treatment. In conclusion, epimedium treatment improved mitochondria function in ES-exposed Leydig cells and activated downstream Drp1-dependent steroidogenesis by CREB mediated signaling pathway.


Assuntos
Epimedium , Dinâmica Mitocondrial , Dinaminas , Endossulfano , Humanos , Células Intersticiais do Testículo , Masculino , Fosfoproteínas
19.
Mol Biol Rep ; 48(3): 2629-2637, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791907

RESUMO

Obesity in aged population have surges the occurrence of various metabolic disorders including Nonalcoholic fatty liver disease (NAFLD). Apoptosis in the liver is one of the causative factors for NAFLD-induced liver damage. Plants derived bioactive peptides have been shown as an alternative treatment approach for the treating NAFLD due to its less toxicity. Moderate exercise has been reported to improve cellular physiological function prevent age associated metabolic disorders. In the present study, we evaluate the effects of bioactive dipeptide (IF) derived from alcalase potato-protein hydrolysates and swimming exercise in preventing High Fat Diet (HFD)-induced liver damage in senescence accelerated mouse-prone 8 (SAMP8) mice model. Mouse were fed with HFD for 6 weeks followed by oral IF administration or swimming exercise and both for 8 weeks. HFD induces significant structural changes in liver of HFD fed SAMP8 mouse. Both IF administration and exercise prevent the structural abnormalities induced by HFD, however, combined IF treatment and exercise offer better protection. Combined IF treatment and exercise activate PI3K/Akt cell survival protein and effectively inhibit Fas-FADD-induced apoptosis in HFD fed aged mouse. Oral supplementation of bioactive peptide IF combined with moderate swimming exercise effectively alleviate HFD-induced hepatic injury in aged mice.


Assuntos
Apoptose , Dipeptídeos/farmacologia , Hepatócitos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Condicionamento Físico Animal , Hidrolisados de Proteína/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Natação , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dieta Hiperlipídica , Hepatócitos/efeitos dos fármacos , Camundongos , Solanum tuberosum/química
20.
Environ Toxicol ; 36(8): 1567-1575, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33929070

RESUMO

Habitual chewing of areca nut increases the risk of cardiovascular disease mortality, but less report demonstrate the toxic mechanism of areca nut on heart. To investigate toxicity of areca nut on cardiomyocytes, we induced the heart injury with arecoline to evaluate the acute damage of areca nut on heart. Different concentrations of are coline (lowdosage: 5 mg/kg/day and high dosage 50 mg/kg/day) were injected into Sprague-Dawley rat via intra-peritoneal method for 21 days to create negative effects of arecoline on cardiomyocyte. Themyocardial architecture of the rat heart was observed. The arecoline-induced apoptotic proteins were analysed via western blotting. The myocardialarchitecture of heart was injured with arecoline and TUNEL stain was also shown are coline-induced cardiac apoptosis. Arecoline promoted the protein expression of both Fas dependent snd mitochondrial dependent apoptosis. In summary, arecoline induces cardiac toxicity and apoptosis by inducing both death receptor and mitochondria-dependent apoptotic pathways on heart.


Assuntos
Areca , Arecolina , Animais , Proteína Ligante Fas , Extratos Vegetais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...