Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 6(7): 798-803, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26191369

RESUMO

The DDR1 and DDR2 receptor tyrosine kinases are activated by extracellular collagen and have been implicated in a number of human diseases including cancer. We performed a fragment-based screen against DDR1 and identified fragments that bound either at the hinge or in the back pocket associated with the DFG-out conformation of the kinase. Modeling based on crystal structures of potent kinase inhibitors facilitated the "back-to-front" design of potent DDR1/2 inhibitors that incorporated one of the DFG-out fragments. Further optimization led to low nanomolar, orally bioavailable inhibitors that were selective for DDR1 and DDR2. The inhibitors were shown to potently inhibit DDR2 activity in cells but in contrast to unselective inhibitors such as dasatinib, they did not inhibit proliferation of mutant DDR2 lung SCC cell lines.

2.
ACS Med Chem Lett ; 6(1): 25-30, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25589925

RESUMO

Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 µM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology.

3.
ACS Med Chem Lett ; 6(1): 31-6, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25589926

RESUMO

A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein-ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...