Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 22(1): 86-98, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21616983

RESUMO

The migration of cortical γ-aminobutyric acidergic interneurons has been extensively studied in rodent embryos, whereas few studies have documented their postnatal migration. Combining in vivo analysis together with time-lapse imaging on cortical slices, we explored the origin and migration of cortical interneurons during the first weeks of postnatal life. Strikingly, we observed that a large pool of GAD65-GFP-positive cells accumulate in the dorsal white matter region during the first postnatal week. Part of these cells divides and expresses the transcription factor paired box 6 indicating the presence of local transient amplifying precursors. The vast majority of these cells are immature interneurons expressing the neuronal marker doublecortin and partly the calcium-binding protein calretinin. Time-lapse imaging reveals that GAD65-GFP-positive neurons migrate from the white matter pool into the overlying anterior cingulate cortex (aCC). Some interneurons in the postnatal aCC express the same immature neuronal markers suggesting ongoing migration of calretinin-positive interneurons. Finally, bromodeoxyuridine incorporation experiments confirm that a small fraction of interneurons located in the aCC are generated during the early postnatal period. These results altogether reveal that at postnatal ages, the dorsal white matter contains a pool of interneuron precursors that divide and migrate into the aCC.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Interneurônios/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Movimento Celular/genética , Proliferação de Células , Embrião de Mamíferos , Proteínas do Olho , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio , Técnicas In Vitro , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Gravidez , Proteínas/genética , RNA não Traduzido , Receptores 5-HT3 de Serotonina/genética , Proteínas Repressoras , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Transl Psychiatry ; 1: e47, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22833193

RESUMO

The serotonin transporter (SERT) is a key molecule involved in the homeostasis of extracellular levels of serotonin and is regulated developmentally. Genetic deletion of SERT in rodents increases extracellular levels of serotonin and affects cellular processes involved in neocortical circuit assembly such as barrel cortex wiring and cortical interneuron migration. Importantly, pharmacological blockade of SERT during brain development leads to phenotypes relevant to psychiatry in rodents and to an increased risk for autism spectrum disorders in humans. Furthermore, developmental adversity interacts with genetically-driven variations of serotonin function in humans and nonhuman primates to increase the risk for a variety of stress-related phenotypes. In this study, we investigate whether an excess of serotonin affects the migration of neocortical pyramidal neurons during development. Using in utero electroporation combined with time-lapse imaging to specifically monitor pyramidal neurons during late mouse embryogenesis, we show that an excess of serotonin reversibly affects the radial migration of pyramidal neurons. We further identify that the serotonin receptor 5-HT(6) is expressed in pyramidal neuron progenitors and that 5-HT(6) receptor activation replicates the effects of serotonin stimulation. Finally, we show that the positioning of superficial layer pyramidal neurons is altered in vivo in SERT knockout mice. Taken together, these results indicate that a developmental excess of serotonin decreases the migration speed of cortical pyramidal neurons, affecting a fundamental step in the assembly of neural circuits. These findings support the hypothesis that developmental dysregulation of serotonin homeostasis has detrimental effects on neocortical circuit formation and contributes to increased vulnerability to psychiatric disorders.


Assuntos
Movimento Celular/genética , Neocórtex/metabolismo , Neurogênese/genética , Células Piramidais/metabolismo , Receptores de Serotonina/fisiologia , Serotonina/fisiologia , Animais , Células Cultivadas , Eletroporação , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neocórtex/embriologia , Neocórtex/patologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Gravidez , Células Piramidais/embriologia , Células Piramidais/patologia , Receptores de Serotonina/biossíntese , Receptores de Serotonina/genética , Serotonina/biossíntese , Serotonina/genética
3.
Eur Neuropsychopharmacol ; 20(1): 1-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19748235

RESUMO

Adult hippocampal neurogenesis, a once unorthodox concept, has changed into one of the most rapidly growing fields in neuroscience. The present report results from the ECNP targeted expert meeting in 2007 during which cellular plasticity changes were addressed in the adult brain, focusing on neurogenesis and apoptosis in hippocampus and frontal cortex. We discuss recent studies investigating factors that regulate neurogenesis with special emphasis on effects of stress, sleep disruption, exercise and inflammation, a group of seemingly unrelated factors that share at least two unifying properties, namely that they all regulate adult hippocampal neurogenesis and have all been implicated in the pathophysiology of mood disorders. We conclude that although neurogenesis has been implicated in cognitive function and is stimulated by antidepressant drugs, its functional impact and contribution to the etiology of depression remains unclear. A lasting reduction in neurogenesis following severe or chronic stress exposure, either in adult or early life, may represent impaired hippocampal plasticity and can contribute to the cognitive symptoms of depression, but is, by itself, unlikely to produce the full mood disorder. Normalization of reductions in neurogenesis appears at least partly, implicated in antidepressant action.


Assuntos
Exercício Físico/fisiologia , Inflamação/fisiopatologia , Neurogênese/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Estresse Psicológico/patologia , Células-Tronco Adultas/fisiologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/fisiopatologia , Hipocampo/patologia , Humanos , Inflamação/patologia
4.
Mol Psychiatry ; 14(3): 280-90, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18663366

RESUMO

The discovery that a common polymorphism (5-HTTLPR, short variant) in the human serotonin transporter gene (SLC6A4) can influence personality traits and increase the risk for depression in adulthood has led to the hypothesis that a relative increase in the extracellular levels of serotonin (5-HT) during development could be critical for the establishment of brain circuits. Consistent with this idea, a large body of data demonstrate that 5-HT is a strong neurodevelopmental signal that can modulate a wide variety of cellular processes. In humans, serotonergic fibers appear in the developing cortex as early as the 10th gestational week, a period of intense neuronal migration. In this study we hypothesized that an excess of 5-HT could affect embryonic cortical interneuron migration. Using time-lapse videometry to monitor the migration of interneurons in embryonic mouse cortical slices, we discovered that the application of 5-HT decreased interneuron migration in a reversible and dose-dependent manner. We next found that 5-HT6 receptors were expressed in cortical interneurons and that 5-HT6 receptor activation decreased interneuron migration, whereas 5-HT6 receptor blockade prevented the migratory effects induced by 5-HT. Finally, we observed that interneurons were abnormally distributed in the cerebral cortex of serotonin transporter gene (Slc6a4) knockout mice that have high levels of extracellular 5-HT. These results shed new light on the neurodevelopmental alterations caused by an excess of 5-HT during the embryonic period and contribute to a better understanding of the cellular processes that could be modulated by genetically controlled differences in human 5-HT homeostasis.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Interneurônios/metabolismo , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Período Crítico Psicológico , Relação Dose-Resposta a Droga , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Serotonina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
5.
Eur J Neurosci ; 27(5): 1051-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18364030

RESUMO

The neurogenic subventricular zone (SVZ) of the lateral ventricle is a potential source for neuronal replacement in the postnatal or adult neocortex after injury. Here we present a novel model system to directly explore the cellular mechanisms of this process. In order to visualize directed migration from the SVZ towards the cortex, we transplanted green fluorescent protein-labeled progenitor/stem cells into the SVZ of newborn rats. At 2 days after transplantation, we generated organotypic slice cultures and applied fluorescent time-lapse imaging to explore directly the migration and integration of donor cells into the host tissue for up to 2 weeks. Our studies revealed that subventricular grafts provide a significant number of immature neurons to neocortical regions. In the cortex, immature neurons first migrate radially towards the pial surface and then differentiate into GABAergic interneurons. We conclude that our model system presents a novel and effective experimental paradigm to evaluate the recruitment of SVZ-derived neurons into the postnatal cortex, a phenomenon that may represent a potential route for cortical repair.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/citologia , Ventrículos Laterais/citologia , Neurônios/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/fisiologia , Ventrículos Laterais/fisiologia , Ventrículos Laterais/transplante , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Neurônios/transplante , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA