Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6363-6377, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699268

RESUMO

Symmetry-breaking charge separation (SB-CS) has recently evolved as an emerging concept offering its potential to the latest generation of organic photovoltaics. However there are several concerns that need to be addressed to reach the state-of-the-art in SB-CS chemistry, for instance, the desirable molecular geometry, interchromophoric distance and extent of electronic coupling. To shed light on those features, it is reported herein, that ortho-functionalized perylene monoimide (PMI) constituted regioisomeric dimer and trimer derivatives with varied molecular twisting and electronic conjugation have been synthesized. In steady-state photophysical studies, all the dimers and trimer derivatives exhibit a larger bathochromic shift in the emission spectra and a significant reduction of fluorescence quantum yield in polar DMF. Among the series of multichromophores, ortho- and self-coupled dimers display the strikingly different optical feature of SB-CS with a very fast charge separation rate (τCS = 80.2 ps) upon photoexcitation in DMF, which is unveiled by femtosecond transient absorption (fs-TA) studies. The SB-CS for two dimers is well-supported by the formation of PMI˙+ and PMI˙- bands in the fs-TA spectra. Further analysis of fs-TA data revealed that, among the other multichromophores the trimer also exhibits a clear charge separation, whereas SB-CS signatures are less prominent, but can not be completely disregarded, for the meta- and para-dimers. Additionally, the charge separation dynamics of those above-mentioned PMI derivatives are devoid of a kinetically favorable excimer or triplet formation. The evidence of a profound charge transfer phenomenon in the ortho-dimer is characterized by density functional theory (DFT) calculations on excited state electronic structures. The excitonic communications in the excited state electronic arrangements unravel the key role of dihedral twisting in SB-CS. The thermodynamic feasibility of CS (ΔGCS) and activation barrier (ΔG≠) of the derivatives in DMF are established from the Rehm-Weller equation and Marcus's theory, respectively. This work is an in-depth study of the effect of mutual orientation of PMIs and regioisomerism in determining sustainable guidelines for using SB-CS.

2.
Photochem Photobiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752609

RESUMO

Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.

3.
Chemphyschem ; 24(15): e202300087, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232205

RESUMO

In a quest to track down the origin of coherent vibrational motions observed in femtosecond pump-probe transients, whether they arise from ground/excited electronic state of solute or are contributed by the solvent, we demonstrate a method for extricating vibrations under resonant and non-resonant impulsive excitations using a diatomic solute in condensed phase (iodine in carbon tetrachloride) with aid of spectral dispersion of the chirped broadband probe. Most importantly, we show how a sum over intensities for a select region of detection wavelengths and Fourier transform of data over select temporal window untwine contributions from vibrational modes of different origins. Thus, in a single pump-probe experiment, vibrational features specific to solute as well as solvent are disentangled that are otherwise spectrally overlapping and are non-separable in conventional (spontaneous/stimulated) Raman spectroscopy employing narrowband excitation. We envision wide-ranging applications of this method to unveil vibrational features in complex molecular systems.

4.
J Phys Chem B ; 127(14): 3197-3207, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37014205

RESUMO

Elucidating the origin of large Stokes shift (LSS) in certain fluorescent proteins absorbing in blue/blue-green and emitting in red/far-red has been quite illusive. Using a combination of spectroscopic measurements, corroborated by theoretical calculations, the presence of four distinct forms of the chromophore of the red fluorescent protein mKeima is confirmed, two of which are found to be emissive: a feeble bluish-green fluorescence (∼520 nm), which is enhanced appreciably in a low pH or deuterated medium but significantly at cryogenic temperatures, and a strong emission in red (∼615 nm). Using femtosecond transient absorption spectroscopy, the trans-protonated form is found to isomerize within hundreds of femtoseconds to the cis-protonated form, which further yields the cis-deprotonated form within picoseconds followed by structural reorganization of the local environment of the chromophore. Thus, the mechanism of LSS is substantiated to proceed via stepwise excited-state isomerization followed by proton transfer involving three isomers, leaving the fourth one (trans-deprotonated) as a bystander. The exquisite pH sensitivity of the dual emission is further exploited in fluorescence microscopy.


Assuntos
Prótons , Isomerismo , Proteínas Luminescentes/química , Análise Espectral , Temperatura , Concentração de Íons de Hidrogênio , Proteínas de Fluorescência Verde/química
5.
Sci Rep ; 13(1): 739, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639412

RESUMO

Using wide-field and point detection modalities, we show how optical trapping dynamics under femtosecond pulsed excitation can be explored by complementing detection of two-photon fluorescence with backscatter. Radial trajectories of trapped particles are mapped from correlated/anti-correlated fluctuations in backscatter pattern whereas temporal evolution of two-photon fluorescence is used to mark the onset of trapping involving multiple particles. Simultaneous confocal detection of backscatter and two-photon fluorescence estimates axial trap stiffness, delineating short-time trapping dynamics. When a second particle is being trapped an oscillatory signal is observed which is due to interference of backscatter amplitudes, revealing inter-particle interactions within the trap. These findings are crucial steps forward to achieve controlled manipulation by harnessing optical nonlinearity under femtosecond pulsed excitation.


Assuntos
Lasers , Luz , Pinças Ópticas , Fótons , Microscopia de Fluorescência por Excitação Multifotônica
6.
Inorg Chem ; 61(43): 17026-17036, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36242586

RESUMO

We report a large Stokes shift and broad emission band in a Mn-based organic-inorganic hybrid halide, (Guanidinium)6Mn3Br12 [GuMBr], consisting of trimeric units of distorted MnBr6 octahedra representing a zero-dimensional compound with a liquid like crystalline lattice. Analysis of the photoluminescence (PL) line width and Raman spectra reveals the effects of electron-phonon coupling, suggestive of the formation of Frenkel-like bound excitons. These bound excitons, regarded as the self-trapped excitons (STEs), account for the large Stokes shift and broad emission band. The excited-state dynamics was studied using femtosecond transient absorption spectroscopy, which confirms the STE emission. Further, this compound is highly emissive with a PL quantum yield of ∼50%. With chloride ion incorporation, we observe enhancement of the emissive properties and attribute it to the effects of intrinsic quantum confinement. Localized electronic states in flat bands lining the gap and their strong coupling with phonons are confirmed with first-principles calculations.

7.
Nanoscale Adv ; 4(14): 2979-2987, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133514

RESUMO

Using dipole approximation, a comparative study of trapping force/potential on different types of dielectric nanoparticles is presented. The trapping force for multilayered nanoparticles, i.e. core-shell-shell type nanoparticles, is found to be enhanced compared with both core-only type and core-shell type nanoparticles. It is shown that an appropriate choice of material and thickness of the middle layer results in tuning the polarizability, thereby playing a vital role in determining the trapping efficiency for core-shell-shell type nanoparticles. Further, the effect of optical nonlinearity under femtosecond pulsed excitation is investigated and it is elucidated that depending on the specific need (i.e. high force versus long confinement time), the nature of excitation (i.e. pulsed excitation or continuous-wave excitation) can be judiciously chosen. These findings are promised to open up new prospects for controlled nanoscale trapping and manipulation across different fields of nanoscience and nanotechnology.

8.
Chemphyschem ; 23(22): e202200454, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35830606

RESUMO

Singlet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from anexcited molecule in singlet electronic state interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium. Here, we report the ultrafast SF dynamics of triisopropylsilylethynyl pentacene (TIPS-Pn) in micellar nanocavity of varying sizes (prepared from TX-100, CTAB, and SDS surfactants). The nanoparticles with a smaller size contain weakly coupled chromophores which are shown to be more efficient for SF followed by triplet generation as compared to the nanoparticles of larger size which contain strongly coupled chromophores which are less efficient due to the presence of singlet exciton traps. Through these studies, we delineate how a subtle interplay between short-range and long-range interaction among chromophores confined within nanoparticles, fine-tuned by the curvature of the micellar interface but irrespective of the nature of the micelle (cationic or anionic or neutral), play a crucial role in SF through and generation of triplets.


Assuntos
Nanopartículas , Teoria Quântica , Naftacenos/química , Nanopartículas/química , Micelas
9.
Sci Rep ; 12(1): 5373, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354867

RESUMO

Recent theoretical and experimental studies have shed light on how laser trapping dynamics under femtosecond pulsed excitation are fine-tuned by optical and thermal nonlinearities. Here, we present experimental results of trapping of single and multiple polystyrene beads (of 1 µm diameter). We show how integration and synchronization of bright-field video microscopy with confocal detection of backscatter provide both spatial and temporal resolution required to capture intricate details of nonlinear trapping dynamics. Such spatiotemporal detection is promising to have far-reaching applications in exploring controlled laser trapping and manipulations harnessed by optical and thermal nonlinearities.

10.
J Phys Chem A ; 126(7): 1019-1032, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142494

RESUMO

The usefulness of a chirped broadband probe and spectral dispersion to obtain Raman spectra under nonresonant/resonant impulsive excitation is revisited. A general methodology is presented that inherently takes care of phasing the time-domain low-frequency oscillations without probe pulse compression and retrieves the absolute phase of the oscillations. As test beds, neat solvents (CCl4, CHCl3, and CH2Cl2) are used. Observation of periodic intensity modulation along detection wavelengths for particular modes is explained using a simple electric field interaction picture. This method is extended to diatomic molecule (iodine) and polyatomic molecules (Nile blue and methylene blue) to assign vibrational frequencies in ground/excited electronic state that are supported by density functional theory calculations. A comparison between frequency-domain and time-domain counterparts, i.e., stimulated Raman scattering and impulsive stimulated Raman scattering using degenerate pump-probe pairs is presented, and most importantly, it is shown how impulsive stimulated Raman scattering using chirped broadband probe retains unique advantages offered by both.

11.
Chem Commun (Camb) ; 57(87): 11485-11488, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34651622

RESUMO

Planar carbazole based hexaphyrin-like macrocycles with bis-coordinating cores and box-shaped cyclic BODIPYs were synthesized. Solution and solid-state structure analysis of the free macrocycles indicates an inversion of two pyrrole rings, resulting in a two-dipyrrin-like environment. The BF2 complexes show large Stokes shifts and exhibit excitonic coupling, fine-tuned by the meso-substituents.

12.
Photochem Photobiol ; 97(5): 980-990, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33624317

RESUMO

Photocycle in wild-type green fluorescent protein (wt-GFP) involves generation of a bright fluorescent deprotonated chromophore from feebly fluorescent protonated form via excited-state proton transfer. In addition to this usual photocycle, wt-GFP is also known to exhibit irreversible photoconversion upon illumination with ultraviolet and visible radiation. However, a detailed understanding of photoconversion in enhanced GFP (EGFP: S65T/F64L mutant of wt-GFP), which predominantly exists in deprotonated form, is yet to be explored. Using 254 nm irradiation, we study how photoconversion proceeds in EGFP. The key findings are observation of spreading out of an isosbestic point and existence of an initial lag phase in spectral kinetics of absorbance, indicative of sequential photoconversion through an intermediate. Fluorescence kinetics of EGFP and its photoproduct are estimated by assigning two unique fluorescence lifetimes which is further complicated by the fact that their fluorescence are spectrally inseparable, as evident from global analysis of fluorescence lifetime. Time-resolved fluorescence anisotropy studies further suggest minimal structural changes in protein scaffold upon photoconversion. Based on these findings, an analytic model is developed to account for the overall decay in fluorescence (as photoconversion proceeds) that inherently incorporates the initial lag phase and a summary of energetics and processes involved is provided.


Assuntos
Iluminação , Raios Ultravioleta , Proteínas de Fluorescência Verde/química , Cinética
13.
Nanoscale Adv ; 3(11): 3288-3297, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133651

RESUMO

Crucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties. On the other hand, femtosecond pulsed excitation is shown to provide additional advantages in tuning of trap stiffness through harnessing optical and thermal nonlinearity. Here we demonstrate that (metal/dielectric hybrid) core/shell type and hollow-core type nanoparticles experience more force than conventional core-type nanoparticles under both continuous-wave and, in particular, ultrafast pulsed excitation. Thus, for the first time, we show how tuning both materials properties as well as the nature of excitation can impart unprecedented control over nanoscale optical trapping and manipulation leading to a wide range of applications.

14.
J Phys Chem B ; 124(31): 6825-6834, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645266

RESUMO

Photophysical properties of tricarbocyanine dyes in various solvents have been widely investigated using a variety of spectroscopic tools. However, the presence of several ground-state isomers and interconversion between these isomers on an ultrafast timescale upon photoexcitation render unambiguous assignment of spectral features quite difficult. In this work, ultrafast excited-state dynamics of two tricarbocyanine dyes in two solvents, DNTTCI and IR140, in ethanol and ethylene glycol, are studied by two-dimensional electronic spectroscopy (2DES). We present a detailed discussion on design and calibration of the 2DES apparatus and on the method for data processing by phase-cycling. For DNTTCI we report a method to obtain solvation correlation function, the nature of which is found to be strongly dependent on the excitation frequencies; a blue-shifted spectrum at early time is observed and explained based on preferential emission from a subset among various isomers having overlapping spectral features. For IR140 in ethanol, four isomers with distinct spectral features are identified, and most importantly, three of these isomers were found to interconvert upon photoexcitation which completes within 100 fs and is explained based on a kinetic model of consecutive chemical reaction. Density functional theory calculations show the presence of several ground-state isomers for both these dyes. Through this work we demonstrate how 2DES can help us to decipher distinct excited-state photophysics in two carbocyanine dyes, polar solvation and photoisomerization, by resolving spectral congestion without sacrificing time resolution.

15.
Chemphyschem ; 21(17): 1908-1917, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619067

RESUMO

Water plays a pivotal role in structural stability of supramolecular pigment assemblies designed for natural light harvesting (for example, chlorosome antenna complex) as well as their artificial analogs. However, the dynamic role of water in the context of excite-state relaxation has not been explored till date, which we report here. Using femtosecond transient absorption spectroscopy, we investigate the excited-state dynamics of two types of nano-scale assemblies of chlorophyll a with different structural motifs, rod-shaped and micellar assemblies, that depend on the water content. We show how water participates in excess energy dissipation by vibrational cooling of the non-thermally populated Qy band at different rates in different types of clusters but exhibits no polar solvation dynamics. For the micelles, we observe a bifurcation of stimulated emission line shape, whereas a positive-to-negative switching of differential absorption is observed for the rods; both these observations are correlated with their specific structural aspects. Density functional theory calculations reveal two possible stable ground state geometries of dimers, accounting for the bifurcation of line shape in micelles. Thus, our study elucidates water-mediated structure-function relationship within these pigment assemblies.


Assuntos
Clorofila A/química , Teoria da Densidade Funcional , Água/química , Elétrons , Tamanho da Partícula , Propriedades de Superfície
16.
Chemphyschem ; 20(11): 1488-1496, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969000

RESUMO

The dynamic role of solvent in influencing the rates of physico-chemical processes (for example, polar solvation and electron transfer) has been extensively studied using time-resolved fluorescence spectroscopy. Here we study ultrafast excited state relaxation dynamics of three different fluorescent probes (DNTTCI, IR-140 and IR-144) in two polar solvents, ethanol and ethylene glycol, using spectrally resolved degenerate pump-probe spectroscopy. We discuss how time-resolved emission spectra can be directly used for constructing relaxation correlation function, obviating spectral reconstruction and estimation of time-zero spectrum in non-polar solvents. We show that depending on the specific probe used, the relaxation dynamics is governed either by intramolecular vibrational relaxation (for IR140) or by intermolecular solvation (for DNTTCI) or by both (for IR144). We further show (using DNTTCI as a probe) that major differences in solvation by ethanol and ethylene glycol is contributed by early time (<1 ps) dynamics.

17.
Chemphyschem ; 19(20): 2796-2803, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29964314

RESUMO

We present a detailed theoretical study on choosing optimum excitation parameters for maximizing the fluorescence yield. Using a model system, we show how the time-averaged emission (fluorescence) is modulated as the excitation conditions are changed from continuous wave excitation to pulsed excitation with various combinations of pulse widths and pulse repetition-rates for the same time-averaged excitation intensity. We conclude that depending on the excitation intensity, different pulse parameters are required for generating maximum fluorescence output. Our method can be implemented for other more sophisticated models without much difficulty.

18.
Faraday Discuss ; 207(0): 39-54, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29380840

RESUMO

Fluorescent proteins exhibit interesting excited state photochemistry, leading to bright fluorescence emission that renders their versatile biological role and wide use as biomarkers. A molecular-level mechanism of the excited state dynamics is desirable to pinpoint the origin of the bright fluorescence of these proteins. Here we present studies on a yellow fluorescent protein variant, Venus, and investigate the photophysics behind the dual fluorescence emission upon UV excitation. Based on our studies, we propose that the unique nature of the potential energy surface is responsible for the observation of minor fluorescence in Venus which is not seen in wild type GFP.


Assuntos
Proteínas de Fluorescência Verde/química , Teoria Quântica , Modelos Moleculares
19.
Opt Express ; 24(19): 21485-96, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661888

RESUMO

The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity. We justify that the relevant parameter to quantify the trapping efficiency is not the absolute depth of the highly asymmetric axial trapping potential but the height of the potential barrier along the beam propagation direction. We also discuss the optimal excitation parameters leading to the most stable dipole trap. Our results show excellent agreement with previous experiments.

20.
Appl Opt ; 54(23): 7002-6, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26368367

RESUMO

Stable optical trapping of dielectric nanoparticles with low power high-repetition-rate ultrafast pulsed excitation has received considerable attention in recent years. However, the exact role of such excitation has been quite illusive so far since, for dielectric micron-sized particles, the trapping efficiency turns out to be similar to that of continuous-wave excitation and independent of pulse chirping. In order to provide a coherent explanation of this apparently puzzling phenomenon, we justify the superior role of high-repetition-rate pulsed excitation in dielectric nanoparticle trapping which is otherwise not possible with continuous-wave excitation at a similar average power level. We quantitatively estimate the optimal combination of pulse peak power and pulse repetition rate leading to a stable trap and discuss the role of inertial response on the dependence of trapping efficiency on pulse width. In addition, we report gradual trapping of individual quantum dots detected by a stepwise rise in a two-photon fluorescence signal from the trapped quantum dots which conclusively proves individual particle trapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...