Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 11(8): 7974-7980, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30715836

RESUMO

Microsized and shape-versatile flexible and wearable lithium-ion batteries (LIBs) are promising and smart energy storage devices for next-generation electronics. In the present work, we design and fabricate the first prototype of microsized fibrous LIBs (thickness ≈ 22 µm) based on multilayered coaxial structure of solid-state battery components over flexible and electrically conductive carbon fibers (CFs). The micro coaxial batteries over the CF surface were fabricated via electrophoretic deposition and dip-coating methods. The microfiber battery showed a stable potential window of 2.5 V with an areal discharge capacity of ∼4.2 µA h cm-2 at 13 µA cm-2 of the current density. The as-assembled battery fiber delivered a comparable energy density (∼0.006 W h cm-3) with solid-state lithium thin-film batteries at higher power densities (∼0.0312 W cm-3). The fibrous batteries were also connected in parallel and in series to deliver large current and high voltage, respectively. The fibrous battery also retains up to 85% discharge capacity even after 100 charge-discharge cycles. Furthermore, these battery fibers performed well under both static and bending conditions, which shows the robustness of the battery fiber. Therefore, this type of fibrous microbattery can be used in advanced flexible and wearable microelectronics, bioelectronics, robotics, and textile applications.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Dispositivos Eletrônicos Vestíveis , Fibra de Carbono/química , Técnicas Eletroquímicas , Íons/química , Energia Solar
3.
ACS Appl Mater Interfaces ; 9(23): 19870-19880, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28534410

RESUMO

Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO4) and titanium dioxide (TiO2) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

4.
ACS Appl Mater Interfaces ; 9(3): 2459-2468, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28026163

RESUMO

A controlled structural morphology, high specific surface area, large void space, and excellent biocompatibility are typical favorable properties in electrochemical energy storage and photocatalytic studies; however, a complete understanding about this essential topic still remains a great challenge. Herein, we have developed a new type of functionalized carbon hollow-structured nanospheres based on core-shell copper sulfide@carbon quantum dots (CQDs)@carbon hollow nanosphere (CHNS) architecture. This CuS@CQDs@C HNS is accomplished by a simple, scalable, in situ single-step hydrothermal method to produce the material that can be employed as an electrode for electrochemical energy storage and photocatalytic applications. Impressively, the CuS@CQDs@C HNS nanostructure delivers exceptional electrochemical energy storage characteristics with high specific capacitance (618 F g-1 at a current density of 1 A g-1) and an excellent rate capability with an extraordinary capacitance (462 F g-1 at current density of 20 A g-1) and long cycle life (95% capacitance retention after 4000 cycles). Further, the proposed photocatalyst exhibited superior photocatalytic activity under solar light due to the efficient electron transfer, which was revealed by photoluminescence studies. Such superior electrochemical and photocatalytic performance can be ascribed to the mutual contribution of CuS, CQDs, and CHNS and unique core-shell architecture. These results exhibit that the core-shell CuS@CQDs@C HNS nanostructure is one of the potential candidates for supercapacitors and photocatalytic applications.

5.
Mater Sci Eng C Mater Biol Appl ; 56: 74-83, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249567

RESUMO

The present work demonstrated a transparent thermosetting nanocomposite with antimicrobial and photoluminescence attributes. The nanocomposites are fabricated by incorporation of different wt.% (1, 2 and 3) of a biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid (MITH-NH) in the hyperbranched epoxy matrix. MITH-NH is obtained by immobilization of 2-methyl-4-isothiazolin-3-one hydrochloride (MITH) at room temperature using sonication on OMMT-carbon dot reduced Cu2O nanohybid. The nanohybrid is prepared by reduction of cupric acetate using carbon dot as the reducing agent in the presence of OMMT at 70°C. The significant improvements in tensile strength (~2 fold), elongation at break (3 fold), toughness (4 fold) and initial thermal degradation temperature (30°C) of the pristine hyperbranched epoxy system are achieved by incorporation of 3wt.% of MITH-NH in it. The nanocomposites exhibit strong antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria and Candida albicans, a fungus. The nanocomposite also shows significant activity against biofilm formation compared to the pristine thermoset. Further, the nanocomposite films emit different colors on exposure of different wavelengths of UV light. The properties of these nanocomposites are also compared with the same nanohybrid without OMMT.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Carbono/química , Desinfetantes/química , Desinfetantes/farmacologia , Nanocompostos/química , Bactérias/efeitos dos fármacos , Cobre , Resinas Epóxi/química , Resinas Epóxi/farmacologia , Teste de Materiais , Temperatura , Resistência à Tração , Tiazóis/química
6.
ACS Appl Mater Interfaces ; 5(20): 10027-34, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24059454

RESUMO

A luminescent transparent hyperbranched epoxy nanocomposite with previously unachieved outstanding toughness and elasticity has been created by incorporation of a very small amount of carbon oxide nanodots. The nanocomposites of the hyperbranched epoxy with carbon oxide dots at different dose levels (0.1, 0.5, and 1.0 wt %) have been prepared by an ex situ solution technique followed by curing with poly(amido-amine) at 100 °C. Different characterizations and evaluations of mechanical and optical properties of the nanocomposites have been performed. The toughness (area under the stress-strain curve) of the pristine system has been improved dramatically by 750% with only 0.5 wt % carbon oxide dots. The tensile strength has been enhanced from 38 to 46 MPa, whereas the elongation at break improved noticeably from 15 to 45%. Excellent adhesive strength combined with transparency and photoluminescent behavior renders these materials highly interesting as functional films in optical devices like light-emitting diodes and UV light detection systems as well as in anticounterfeiting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...