Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Sci Lett ; 23(3): e1073, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35859939

RESUMO

The persistent inter-model spread in the response of global-mean surface temperature to increased CO2 (known as the "Equilibrium Climate Sensitivity," or "ECS") is a crucial problem across model generations. This work examines the influence of the models' present-day atmospheric circulation climatologies, and the accompanying climatological cloud radiative effects, in explaining that spread. We analyze the Coupled Model Intercomparison Project Phase 6 (CMIP6) models and find that they simulate a more poleward, and thus more realistic, edge of the Hadley cell (HC) in the Southern Hemisphere than the CMIP5 models, although the climatological shortwave cloud radiative effects are similar in the two generations of models. A few CMIP5 models with extreme equatorward biases in the HC edge exhibited high ECS due to strong Southern midlatitude shortwave cloud radiative warming in response to climate change, suggesting an ECS dependence on HC position. We find that such constraint no longer holds for the CMIP6 models, due to the absence of models with extreme HC climatologies. In spite of this, however, the CMIP6 models show an increased spread in ECS, with more models in the high ECS range. In addition, an improved representation of the climatological jet dynamics does not lead to a new emergent constraint in the CMIP6 models either.

2.
Sci Adv ; 4(7): eaat6025, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30050990

RESUMO

Previous studies have extensively investigated the impact of Arctic sea ice anomalies on the midlatitude circulation and associated surface climate in winter. However, there is an ongoing scientific debate regarding whether and how sea ice retreat results in the observed cold anomaly over the adjacent continents. We present a robust "cold Siberia" pattern in the winter following sea ice loss over the Barents-Kara seas in late autumn in an advanced atmospheric general circulation model, with a well-resolved stratosphere. Additional targeted experiments reveal that the stratospheric response to sea ice forcing is crucial in the development of cold conditions over Siberia, indicating the dominant role of the stratospheric pathway compared with the direct response within the troposphere. In particular, the downward influence of the stratospheric circulation anomaly significantly intensifies the ridge near the Ural Mountains and the trough over East Asia. The persistently intensified ridge and trough favor more frequent cold air outbreaks and colder winters over Siberia. This finding has important implications for improving seasonal climate prediction of midlatitude cold events. The results also suggest that the model performance in representing the stratosphere-troposphere coupling could be an important source of the discrepancy between recent studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...