Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37398012

RESUMO

Suppression of immune response is a phenomenon that enables biological processes such as gamete fertilization, cell growth, cell proliferation, endophyte recruitment, parasitism, and pathogenesis. Here, we show for the first time that the Plasminogen-Apple-Nematode (PAN) domain present in G-type lectin receptor-like kinases is essential for immunosuppression in plants. Defense pathways involving jasmonic acid and ethylene are critical for plant immunity against microbes, necrotrophic pathogens, parasites, and insects. Using two Salix purpurea G-type lectin receptor kinases, we demonstrated that intact PAN domains suppress jasmonic acid and ethylene signaling in Arabidopsis and tobacco. Variants of the same receptors with mutated residues in this domain could trigger induction of both defense pathways. Assessment of signaling processes revealed significant differences between receptors with intact and mutated PAN domain in MAPK phosphorylation, global transcriptional reprogramming, induction of downstream signaling components, hormone biosynthesis and resistance to Botrytis cinerea . Further, we demonstrated that the domain is required for oligomerization, ubiquitination, and proteolytic degradation of these receptors. These processes were completely disrupted when conserved residues in the domain were mutated. Additionally, we have tested the hypothesis in recently characterized Arabidopsis mutant which has predicted PAN domain and negatively regulates plant immunity against root nematodes. ern1.1 mutant complemented with mutated PAN shows triggered immune response with elevated WRKY33 expression, hyperphosphorylation of MAPK and resistant to necrotrophic fungus Botrytis cinerea . Collectively, our results suggest that ubiquitination and proteolytic degradation mediated by the PAN domain plays a role in receptor turn-over to suppress jasmonic acid and ethylene defense signaling in plants.

2.
Cancers (Basel) ; 15(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37370783

RESUMO

Glioblastoma, IDH-wild type (GBM) is the most common and lethal malignant primary brain tumor. Standard of care includes surgery, radiotherapy, and chemotherapy with the DNA alkylating agent temozolomide (TMZ). Despite these intensive efforts, current GBM therapy remains mainly palliative with only modest improvement achieved in overall survival. With regards to radiotherapy, GBM is ranked as one of the most radioresistant tumor types. In this study, we wanted to investigate if enriching cells in the most radiosensitive cell cycle phase, mitosis, could improve localized radiotherapy for GBM. To achieve cell cycle arrest in mitosis we used ispinesib, a small molecule inhibitor to the mitotic kinesin, KIF11. Cell culture studies validated that ispinesib radiosensitized patient-derived GBM cells. In vivo, we validated that ispinesib increased the fraction of tumor cells arrested in mitosis as well as increased apoptosis. Critical for the translation of this approach, we validated that combination therapy with ispinesib and irradiation led to the greatest increase in survival over either monotherapy alone. Our data highlight KIF11 inhibition in combination with radiotherapy as a new combinatorial approach that reduces the overall radioresistance of GBM and which can readily be moved into clinical trials.

3.
Commun Biol ; 6(1): 567, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237044

RESUMO

The ability to stack multiple genes in plants is of great importance in the development of crops with desirable traits but can be challenging due to limited selectable marker options. Here we establish split selectable marker systems using protein splicing elements called "inteins" for Agrobacterium-mediated co-transformation in plants. First, we show that such a split selectable marker system can be used effectively in plants to reconstitute a visible marker, RUBY, from two non-functional fragments through tobacco leaf infiltration. Next, to determine the general applicability of our split selectable marker systems, we demonstrate the utility of these systems in the model plants Arabidopsis and poplar by successfully stacking two reporters eYGFPuv and RUBY, using split Kanamycin or Hygromycin resistance markers. In conclusion, this method enables robust plant co-transformation, providing a valuable tool for the simultaneous insertion of multiple genes into both herbaceous and woody plants efficiently.


Assuntos
Inteínas , Processamento de Proteína , Plantas Geneticamente Modificadas/genética , Inteínas/genética , Transformação Genética , Transgenes
4.
iScience ; 26(4): 106274, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36910328

RESUMO

The global pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a severe global health problem because of its rapid spread. Both Ace2 and NRP1 provide initial viral binding sites for SARS-CoV-2. Here, we show that cysteine residues located in the vestigial plasminogen-apple-nematode (PAN) domain of NRP1 are necessary for SARS-CoV-2 spike protein internalization. Mutating novel cysteine residues in the PAN altered NRP1 stability and downstream activation of extracellular signal-regulated kinase (ERK) signaling pathway and impaired its interaction with the spike protein. This resulted in a significant reduction in spike protein abundance in Vero-E6 cells for the original, alpha, and delta SARS-CoV-2 variants even in the presence of the Ace2. Moreover, mutating these cysteine residues in NRP1 significantly lowered its association with Plexin-A1. As the spike protein is a critical component for targeted therapy, our biochemical study may represent a distinct mechanism to develop a path for future therapeutic discovery.

5.
Commun Biol ; 5(1): 646, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778602

RESUMO

The Plasminogen-Apple-Nematode (PAN) domain, with a core of four to six cysteine residues, is found in > 28,000 proteins across 959 genera. Still, its role in protein function is not fully understood. The PAN domain was initially characterized in numerous proteins, including HGF. Dysregulation of HGF-mediated signaling results in multiple deadly cancers. The binding of HGF to its cell surface receptor, c-MET, triggers all biological impacts. Here, we show that mutating four core cysteine residues in the HGF PAN domain reduces c-MET interaction, subsequent c-MET autophosphorylation, and phosphorylation of its downstream targets, perinuclear localization, cellular internalization of HGF, and its receptor, c-MET, and c-MET ubiquitination. Furthermore, transcriptional activation of HGF/c-MET signaling-related genes involved in cancer progression, invasion, metastasis, and cell survival were impaired. Thus, targeting the PAN domain of HGF may represent a mechanism for selectively regulating the binding and activation of the c-MET pathway.


Assuntos
Malus , Nematoides , Neoplasias , Animais , Cisteína/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Malus/metabolismo , Nematoides/metabolismo , Plasminogênio , Serina Proteases
6.
ACS Synth Biol ; 11(7): 2513-2517, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35767601

RESUMO

Virus-assisted delivery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system represents a promising approach for editing plant genomes. Among the CRISPR/Cas systems, CRISPR/Cas9 is most widely used; however, to pack the relatively large size of the CRISPR/Cas9 system into viral vectors with confined packaging capacity is challenging. To address this technical challenge, we developed a strategy based on split inteins that splits the required CRISPR/Cas9 components across a dual-vector system. The CRISPR/Cas reassembles into an active form following co-infection to achieve targeted genome editing in plant cells. An intein-mediated split system was adapted and optimized in plant cells by a successful demonstration of split-eYGFPuv expression. Using a plant-based biosensor, we demonstrated for the first time that the split-nCas9 can induce efficient base editing in plant cells. We identified several split sites for future biodesign strategies. Overall, this strategy provides new opportunities to bridge different CRISPR/Cas9 tools including base editor, prime editor, and CRISPR activation with virus-mediated gene editing.


Assuntos
Sistemas CRISPR-Cas , Inteínas , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta , Inteínas/genética , Plantas/genética
7.
Trends Plant Sci ; 26(11): 1133-1152, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34340931

RESUMO

CRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Plantas/genética
8.
Sci Rep ; 10(1): 13946, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811879

RESUMO

KIF11 is a homotetrameric kinesin that peaks in protein expression during mitosis. It is a known mitotic regulator, and it is well-described that KIF11 is necessary for the formation and maintenance of the bipolar spindle. However, there has been a growing appreciation for non-mitotic roles for KIF11. KIF11 has been shown to function in such processes as axon growth and microtubule polymerization. We previously demonstrated that there is an interphase pool of KIF11 present in glioblastoma cancer stem cells that drives tumor cell invasion. Here, we identified a previously unknown association between KIF11 and primary cilia. We confirmed that KIF11 localized to the basal bodies of primary cilia in multiple cell types, including neoplastic and non-neoplastic cells. Further, we determined that KIF11 has a role in regulating cilia dynamics. Upon the reduction of KIF11 expression, the number of ciliated cells in asynchronously growing populations was significantly increased. We rescued this effect by the addition of exogenous KIF11. Lastly, we found that depleting KIF11 resulted in an increase in cilium length and an attenuation in the kinetics of cilia disassembly. These findings establish a previously unknown link between KIF11 and the dynamics of primary cilia and further support non-mitotic functions for this kinesin.


Assuntos
Cílios/metabolismo , Cinesinas/metabolismo , Animais , Corpos Basais/metabolismo , Linhagem Celular Tumoral , Cílios/genética , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Interfase , Cinesinas/biossíntese , Cinesinas/genética , Camundongos , Camundongos Nus , Camundongos SCID , Microtúbulos/metabolismo , Mitose , Células-Tronco Neoplásicas/metabolismo
9.
Cell Death Dis ; 11(4): 298, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345958

RESUMO

APC/CCdh1 is a ubiquitin ligase with roles in numerous diverse processes, including control of cellular proliferation and multiple aspects of the DNA damage response. Precise regulation of APC/CCdh1 activity is central to efficient cell-cycle progression and cellular homeostasis. Here, we have identified Cdh1 as a direct substrate of the replication stress checkpoint effector kinase Chk1 and demonstrate that Chk1-mediated phosphorylation of Cdh1 contributes to its recognition by the SCFßTRCP ubiquitin ligase, promotes efficient S-phase entry, and is important for cellular proliferation during otherwise unperturbed cell cycles. We also find that prolonged Chk1 activity in late S/G2 inhibits Cdh1 accumulation. In addition to promoting control of APC/CCdh1 activity by facilitating Cdh1 destruction, we find that Chk1 also antagonizes activity of the ligase by perturbing the interaction between Cdh1 and the APC/C. Overall, these data suggest that the rise and fall of Chk1 activity contributes to the regulation of APC/CCdh1 activity that enhances the replication process.


Assuntos
Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Fase S/genética , Ubiquitina/metabolismo , Células HeLa , Humanos , Fosforilação , Transfecção
10.
Mol Cancer Res ; 17(7): 1519-1530, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036696

RESUMO

Glioblastoma (GBM) is the most common and lethal primary brain tumor and remains incurable. This is in part due to the cellular heterogeneity within these tumors, which includes a subpopulation of treatment-resistant cells called cancer stem-like cells (CSC). We previously identified that the anaphase-promoting complex/cylosome (APC/C), a key cell-cycle regulator and tumor suppressor, had attenuated ligase activity in CSCs. Here, we assessed the mechanism of reduced activity, as well as the efficacy of pharmacologically targeting the APC/C in CSCs. We identified hyperphosphorylation of CDH1, but not pseudosubstrate inhibition by early mitotic inhibitor 1 (EMI1), as a major mechanism driving attenuated APC/CCDH1 activity in the G1-phase of the cell cycle in CSCs. Small-molecule inhibition of the APC/C reduced viability of both CSCs and nonstem tumor cells (NSTCs), with the combination of proTAME and apcin having the biggest impact. Combinatorial drug treatment also led to the greatest mitotic arrest and chromosomal abnormalities. IMPLICATIONS: Our findings demonstrate how the activity of the APC/CCDH1 tumor suppressor is reduced in CSCs and also validates small-molecule inhibition of the APC/C as a promising therapeutic target for the treatment of GBM.


Assuntos
Antígenos CD/genética , Caderinas/genética , Proteínas Cdc20/genética , Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Glioblastoma/genética , Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/genética , Caderinas/antagonistas & inibidores , Carbamatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Diaminas/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
11.
Plants (Basel) ; 7(4)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30511704

RESUMO

Immunolocalization studies to visualize the distribution of proteins on meiotic chromosomes have become an integral part of studies on meiosis in the model organism Arabidopsis thaliana. These techniques have been used to visualize a wide range of meiotic proteins involved in different aspects of meiosis, including sister chromatid cohesion, recombination, synapsis, and chromosome segregation. However, the analysis of meiotic spindle structure by immunofluorescence is of outstanding importance in plant reproductive biology and is very challenging. In the following report, we describe the complete and easy protocol for the localization of proteins to the male meiotic spindle and male meiotic chromosomes. The protocol is fast, improved, and robust without the use of any harsh enzymes.

12.
Front Plant Sci ; 8: 846, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588601

RESUMO

In eukaryotic organisms, the correct regulation of sister chromatid cohesion, whereby sister chromatids are paired and held together, is essential for accurate segregation of the sister chromatids and homologous chromosomes into daughter cells during mitosis and meiosis, respectively. Sister chromatid cohesion requires a cohesin complex comprised of structural maintenance of chromosome adenosine triphosphatases and accessory proteins that regulate the association of the complex with chromosomes or that are involved in the establishment or release of cohesion. The cohesin complex also plays important roles in the repair of DNA double-strand breaks, regulation of gene expression and chromosome condensation. In this review, we summarize progress in understanding cohesion dynamics in plants, with the aim of uncovering differences at specific stages. We also highlight dissimilarities between plants and other eukaryotes with respect to the key players involved in the achievement of cohesion, pointing out areas that require further study.

14.
Development ; 143(15): 2791-802, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317808

RESUMO

The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein. CAP-D3 represses KNOT expression in cells immediately adjacent to the anterior/posterior boundary, thus blocking KNOT-mediated repression of EGFR activity and preventing cell death. Maintenance of EGFR activity in these cells depresses dSRF levels in the neighboring anterior crossvein progenitor cells, allowing them to differentiate into vein cells. These findings uncover a novel transcriptional regulatory network influencing Drosophila wing vein development, and are the first to identify a Condensin II subunit as an important regulator of EGFR activity and cell fate determination in vivo.


Assuntos
Cromossomos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Plant Cell ; 28(2): 521-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26813623

RESUMO

Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes during mitosis and meiosis. Stable binding of cohesin with chromosomes is regulated in part by the opposing actions of CTF7 (CHROMOSOME TRANSMISSION FIDELITY7) and WAPL (WINGS APART-LIKE). In this study, we characterized the interaction between Arabidopsis thaliana CTF7 and WAPL by conducting a detailed analysis of wapl1-1 wapl2 ctf7 plants. ctf7 plants exhibit major defects in vegetative growth and development and are completely sterile. Inactivation of WAPL restores normal growth, mitosis, and some fertility to ctf7 plants. This shows that the CTF7/WAPL cohesin system is not essential for mitosis in vegetative cells and suggests that plants may contain a second mechanism to regulate mitotic cohesin. WAPL inactivation restores cohesin binding and suppresses ctf7-associated meiotic cohesion defects, demonstrating that WAPL and CTF7 function as antagonists to regulate meiotic sister chromatid cohesion. The ctf7 mutation only had a minor effect on wapl-associated defects in chromosome condensation and centromere association. These results demonstrate that WAPL has additional roles that are independent of its role in regulating chromatin-bound cohesin.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Acetiltransferases/genética , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Centrômero/genética , Centrômero/fisiologia , Centrômero/ultraestrutura , Cromatina/genética , Segregação de Cromossomos , Meiose , Mitose , Mutação , Coesinas
16.
PLoS Genet ; 10(7): e1004497, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25033056

RESUMO

Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes in mitosis and meiosis. The establishment of stable sister chromatid cohesion occurs during DNA replication and involves acetylation of the complex by the acetyltransferase CTF7. In higher eukaryotes, the majority of cohesin complexes are removed from chromosomes during prophase. Studies in fly and human have shown that this process involves the WAPL mediated opening of the cohesin ring at the junction between the SMC3 ATPase domain and the N-terminal domain of cohesin's α-kleisin subunit. We report here the isolation and detailed characterization of WAPL in Arabidopsis thaliana. We show that Arabidopsis contains two WAPL genes, which share overlapping functions. Plants in which both WAPL genes contain T-DNA insertions show relatively normal growth and development but exhibit a significant reduction in male and female fertility. The removal of cohesin from chromosomes during meiotic prophase is blocked in Atwapl mutants resulting in chromosome bridges, broken chromosomes and uneven chromosome segregation. In contrast, while subtle mitotic alterations are observed in some somatic cells, cohesin complexes appear to be removed normally. Finally, we show that mutations in AtWAPL suppress the lethality associated with inactivation of AtCTF7. Taken together our results demonstrate that WAPL plays a critical role in meiosis and raises the possibility that mechanisms involved in the prophase removal of cohesin may vary between mitosis and meiosis in plants.


Assuntos
Acetiltransferases/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Prófase/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Cromossomos/metabolismo , Replicação do DNA/genética , Humanos , Meiose/genética , Mitose/genética , Troca de Cromátide Irmã/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...