Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1248: 340908, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813459

RESUMO

CTAC-based gold nanoseed-induced concave curvature evolution of surface boundary planes from concave gold nanocube (CAuNC) to concave gold nanostar (CAuNS) has been achieved by a novel synthetic methodology simply by controlling the extent of seed used and hence the generated 'Resultant Inward Imbalanced Seeding Force (RIISF)'. The resultant CAuNS shows an excellent enhancement in catalytic activity compared to CAuNC and other intermediates as a function of curvature-induced anisotropy. Detailed characterization evaluates the presence of an enhanced number of multiple defect sites, high energy facets, larger surface area, and roughened surface which ultimately results in an increased mechanical strain, coordinately unsaturation, and multifacet-oriented anisotropic behavior suitable for positive influence on the binding affinity of CAuNSs. While different crystalline and structural parameters improve their catalytic activity, the resultant uniform three-dimensional (3D) platform shows comparatively easy pliability and well absorptivity on the glassy carbon electrode surface for increased shelf life, a uniform structure to confine a large extent of stoichiometric systems, and long-term stability under ambient conditions for making this newly developed material a unique nonenzymatic scalable universal electrocatalytic platform. With the help of various electrochemical measurements, the ability of the platform has been established by performing highly specific and sensitive detection of the two most important human bio messengers: Serotonin (STN) and Kynurenine (KYN) which are metabolites of L-Tryptophan in the human body system. The present study mechanistically surveys the role of seed-induced RIISF-modulated anisotropy in controlling the catalytic activity which offers a universal 3D electrocatalytic sensing tenet by an electrocatalytic approach.


Assuntos
Técnicas Biossensoriais , Cinurenina , Humanos , Serotonina , Ouro/química , Carbono/química , Triptofano , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
2.
Nanoscale ; 10(28): 13792, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29978174

RESUMO

Correction for 'Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid' by Sandip Kumar De, et al., Nanoscale, 2018, 10, 11091-11102.

3.
Nanoscale ; 10(23): 11091-11102, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29872830

RESUMO

Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.


Assuntos
Ácido Ascórbico/análise , Ouro , Nanoestruturas , Espectroscopia Dielétrica , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...