Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(21): 213604, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33275016

RESUMO

We devise an approach to characterizing the intricate interplay between classical and quantum interference of two-photon states in a network, which comprises multiple time-bin modes. By controlling the phases of delocalized single photons, we manipulate the global mode structure, resulting in distinct two-photon interference phenomena for time-bin resolved (local) and time-bucket (global) coincidence detection. This coherent control over the photons' mode structure allows for synthesizing two-photon interference patterns, where local measurements yield standard Hong-Ou-Mandel dips while the global two-photon visibility is governed by the overlap of the delocalized single-photon states. Thus, our experiment introduces a method for engineering distributed quantum interferences in networks.

2.
Opt Express ; 28(8): 12385-12394, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403736

RESUMO

We present a single-pass source of broadband multimode squeezed light with potential application in quantum information and quantum metrology. The source is based on a type I parametric down-conversion (PDC) process inside a bulk nonlinear crystal in a non-collinear configuration. The generated squeezed light exhibits a spatio-temporal multimode behavior that is probed using a homodyne measurement with a local oscillator shaped both spatially and temporally. Finally we follow a covariance matrix based approach to reveal the distribution of the squeezing among several independent temporal and spatial modes. This unambiguously validates the multimode feature of our source.

3.
Opt Lett ; 44(16): 3992-3995, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415530

RESUMO

We study noise propagation dynamics in a femtosecond oscillator by injecting external noise on the pump intensity. We utilize a spectrally resolved homodyne detection technique that enables simultaneous measurement of amplitude and phase quadrature noises of different spectral bands of the oscillator. We perform a modal analysis of the oscillator noise in which each mode corresponds to a particular temporal/spectral shape of the pulsed light. We compare this modal approach with the conventional noise detection methods and find the superiority of our method, in particular unveiling a complete physical picture of noise distribution in the femtosecond oscillator.

4.
Opt Lett ; 43(8): 1794-1797, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652366

RESUMO

An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100% in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140 dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.

5.
Opt Lett ; 39(19): 5586-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360934

RESUMO

We report class-A dual-frequency oscillation at 1.55 µm in a vertical external cavity surface emitting laser with more than 100 mW optical power. The two orthogonal linear polarizations of different frequencies oscillate simultaneously as their nonlinear coupling is reduced below unity by spatially separating them inside the active medium. The spectral behavior of the radio frequency beatnote obtained by optically mixing two polarizations and the phase noise of the beatnote have been explored for different coupling strengths between the lasing modes.

6.
Opt Lett ; 37(23): 4901-3, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23202084

RESUMO

A reduction of more than 20 dB of the intensity noise at the antiphase relaxation oscillation frequency is experimentally demonstrated in a two-polarization dual-frequency solid-state laser without any optical or electronic feedback loop. Such behavior is inherently obtained by aligning the two orthogonally polarized oscillating modes with the crystallographic axes of a (100)-cut neodymium-doped yttrium aluminum garnet active medium. The antiphase noise level is shown to increase as soon as one departs from this peculiar configuration, evidencing the predominant role of the nonlinear coupling constant. This experimental demonstration opens new perspectives on the design and realization of extremely low-noise dual-frequency solid-state lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...