Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(3): e0011974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470939

RESUMO

Animal hoarding disorder (AHD) is classified as a psychiatric obsessive-compulsive condition characterized by animal accumulation and often accompanied by unsanitary conditions and animal cruelty. Although AHD may increase pathogen transmission and spread, particularly for zoonotic diseases, human and dog exposure in such cases has yet to be fully established. Accordingly, this study aimed to assess Brucella canis in 19 individuals with AHD (11 households) and their 264 dogs (21 households) in Curitiba, the eighth largest city in Brazil, with approximately 1.8 million habitants. Anti-B. canis antibodies were detected by the 2-mercaptoethanol microplate agglutination test (2ME-MAT) and by a commercial lateral flow immunoassay (LFIA), while molecular detection of previously positive seropositive samples was performed by conventional PCR. Although all the human samples were 2ME-MAT negative, 12/264 (4.5%, 95% Confidence Interval: 2.0-7.0%) dog samples were 2ME-MAT and LFIA positive, with 2ME-MAT titers ranging from 20 to 640. At least one dog in 4/21 (19.0%, 95% CI: 2.0-46.0%) households was seropositive. Despite the absence of seropositivity in individuals with AHD and the comparatively low seroprevalence in dogs, B. canis circulation and outbreaks should be considered in such human populations due to the high burden and recurrent character of B. canis exposure in high-density dog populations and the constant introduction of susceptible animals.


Assuntos
Brucella canis , Brucelose , Doenças do Cão , Transtorno de Acumulação , Animais , Cães , Humanos , Brucella canis/genética , Brucelose/diagnóstico , Brucelose/epidemiologia , Brucelose/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Saúde Única , Estudos Soroepidemiológicos
2.
Biomedicines ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189621

RESUMO

Wound healing is a complex process of repair that involves the interaction between different cell types and involves coordinated interactions between intracellular and extracellular signaling. Bone Marrow Mesenchymal Stem Cells (BMSCs) based and acellular amniotic membrane (AM) therapeutic strategies with the potential for treatment and regeneration of tissue. We aimed to evaluate the involvement of paracrine effects in tissue repair after the flap skin lesion rat model. In the full-thickness flap skin experiment of forty Wistar rats: A total of 40 male Wistar rats were randomized into four groups: group I: control (C; n = 10), with full-thickness lesions on the back, without (BMSCs) or AM (n = 10); group II: injected (BMSCs; n = 10); group III: covered by AM; group IV-injected (AM + BMSCs; n = 10). Cytokine levels, IL-1, and IL-10 assay kits, superoxide dismutase (SOD), glutathione reductase (GRs) and carbonyl activity levels were measured by ELISA 28th day, and TGF-ß was evaluated by immunohistochemical, the expression collagen expression was evaluated by Picrosirius staining. Our results showed that the IL-1 interleukin was higher in the control group, and the IL-10 presented a higher mean when compared to the control group. The groups with BMSCs and AM showed the lowest expression levels of TGF-ß. SOD, GRs, and carbonyl activity analysis showed a predominance in groups that received treatment from 80%. The collagen fiber type I was predominant in all groups; however, the AM + BMSCs group obtained a higher average when compared to the control group. Our findings suggest that the AM+ BMSCs promote skin wound healing, probably owing to their paracrine effect attributed to the promotion of new collagen for tissue repair.

3.
PLoS One ; 17(9): e0273506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126048

RESUMO

Public health threats such as the current COVID-19 pandemics have required prompt action by the local, national, and international authorities. Rapid and noninvasive diagnostic methods may provide on-site detection and immediate social isolation, used as tools to rapidly control virus spreading. Accordingly, the aim of the present study was to evaluate a commercial breath analysis test (TERA.Bio®) and deterministic algorithm for detecting the SARS-CoV-2 spectral signature of Volatile Organic Compounds present in exhaled air samples of suspicious persons from southern Brazil. A casuistic total of 70 infected and 500 non-infected patients were sampled, tested, and results later compared to RT-qPCR as gold standard. Overall, the test showed 92.6% sensitivity and 96.0% specificity. No statistical correlation was observed between SARS-CoV-2 positivity and infection by other respiratory diseases. Further studies should focus on infection monitoring among asymptomatic persons. In conclusion, the breath analysis test herein may be used as a fast, on-site, and easy-to-apply screening method for diagnosing COVID-19.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Brasil , COVID-19/diagnóstico , Humanos , SARS-CoV-2 , Tecnologia
4.
Life (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575028

RESUMO

Acellular amniotic membrane (AM) has been studied, with promising results on the reconstruction of lesioned tissues, and has become an attractive approach for tracheal repair. This study aimed to evaluate the repair of the trachea with human umbilical cord mesenchymal stem cells (hucMSCs) differentiated in chondrocytes, grown on an experimental model. Tracheal defects were induced by surgical tracheostomy in 30 New Zealand rabbits, and the acellular amniotic membrane, with or without cells, was covering the defect. The hucMSCs were isolated and cultivated with chondrogenic differentiation over the culture of 14 days, and then grown on the AM. In this study, the AM was biocompatible and hucMSCs differentiated into chondrocytes. Our results demonstrated an important role for AM with cultured cells in the promotion of immature collagen, known to produce tissue regeneration. In addition, cartilaginous tissue was found at the tracheal defects, demonstrated by immunohistology results. This study suggests that this biomaterial implantation can be an effective future therapeutic alternative for patients with tracheal injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...