Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614282

RESUMO

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipocampo , Fótons , Terapia com Prótons , Animais , Camundongos , Apoptose/efeitos da radiação , Terapia com Prótons/efeitos adversos , Hipocampo/efeitos da radiação , Meduloblastoma/radioterapia , Meduloblastoma/patologia , Carcinogênese/efeitos da radiação , Camundongos Knockout , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , Encéfalo/efeitos da radiação , Receptor Patched-1/genética , Modelos Animais de Doenças , Prótons/efeitos adversos
2.
ACS Appl Mater Interfaces ; 15(51): 59348-59357, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38090803

RESUMO

Lithium-oxygen aprotic batteries (aLOBs) are highly promising next-generation secondary batteries due to their high theoretical energy density. However, the practical implementation of these batteries is hindered by parasitic reactions that negatively impact their reversibility and cycle life. One of the challenges lies in the oxidation of Li2O2, which requires large overpotentials if not catalyzed. To address this issue, redox mediators (RMs) have been proposed to reduce the oxygen evolution reaction (OER) overpotentials. In this study, we focus on a lithium iodide RM and investigate its role on the degradation chemistry and the release of singlet oxygen in aLOBs, in different solvent environments. Specifically, we compare the impact of a polar solvent, dimethyl sulfoxide (DMSO), and a low polarity solvent, tetraglyme (G4). We demonstrate a strong interplay between solvation, degradation, and redox mediation in OER by LiI in aLOBs. The results show that LiI in DMSO-based electrolytes leads to extensive degradation and to 1O2 release, affecting the cell performance, while in G4-based electrolytes, the release of 1O2 appears to be suppressed, resulting in better cyclability.

3.
Radiat Prot Dosimetry ; 199(14): 1616-1619, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721070

RESUMO

Quality control of therapeutic photon beams in the form of postal dose audits based on passive dosemeters is widely used in photon radiotherapy. On the other hand, no standardised dosimetry audit programme for proton centres has been established in Europe so far. We evaluated alanine/EPR dosimetry systems developed at the Istituto Superiore di Sanità (Italy), the Hasselt Universiteit (Belgium) and the Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences (Poland) for their applicability as a potential tool for routine mailed dose audits of passively scattered therapeutic proton beams. The evaluation was carried out in the form of an intercomparison. Dosemeters were irradiated in the 70 MeV proton beam at ocular proton therapy facility in the Cyclotron Centre Bronowice at the Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences in Krakow. A very good agreement was found between the dose measured by three laboratories and the delivered dose determined with an ionisation chamber. This, together with the inherent properties of alanine, such as non-destructive readout, tissue equivalence, weak energy dependence, dose rate independence and insignificant fading, makes alanine a good candidate for a dosemeter used in postal auditing in proton ocular radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Olho , Radiometria , Alanina
4.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175984

RESUMO

Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Prótons , Meduloblastoma/radioterapia , Caspase 3 , Neoplasias Cerebelares/radioterapia , Radiobiologia
5.
Front Public Health ; 8: 611146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365298

RESUMO

Scientific community and institutions (e. g., ICRP) consider that the Linear No-Threshold (LNT) model, which extrapolates stochastic risk at low dose/low dose rate from the risk at moderate/high doses, provides a prudent basis for practical purposes of radiological protection. However, biological low dose/dose rate responses that challenge the LNT model have been highlighted and important dowels came from radiobiology studies conducted in Deep Underground Laboratories (DULs). These extreme ultra-low radiation environments are ideal locations to conduct below-background radiobiology experiments, interesting from basic and applied science. The INFN Gran Sasso National Laboratory (LNGS) (Italy) is the site where most of the underground radiobiological data has been collected so far and where the first in vivo underground experiment was carried out using Drosophila melanogaster as model organism. Presently, many DULs around the world have implemented dedicated programs, meetings and proposals. The general message coming from studies conducted in DULs using protozoan, bacteria, mammalian cells and organisms (flies, worms, fishes) is that environmental radiation may trigger biological mechanisms that can increase the capability to cope against stress. However, several issues are still open, among them: the role of the quality of the radiation spectrum in modulating the biological response, the dependence on the biological endpoint and on the model system considered, the overall effect at organism level (detrimental or beneficial). At LNGS, we recently launched the RENOIR experiment aimed at improving knowledge on the environmental radiation spectrum and to investigate the specific role of the gamma component on the biological response of Drosophila melanogaster.


Assuntos
Laboratórios , Proteção Radiológica , Animais , Drosophila melanogaster , Itália , Radiobiologia
6.
Int J Radiat Biol ; 93(1): 118-126, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27735728

RESUMO

PURPOSE: In the frame of the QA program of RENEB, an inter-laboratory comparison (ILC) of calibration sources used in biological dosimetry was achieved to investigate the influence of calibration practices and protocols on the results of the dose estimation performance as a first step to harmonization and standardization of dosimetry and irradiation practices in the European biological dosimetry network. MATERIALS AND METHODS: Delivered doses by irradiation facilities used by RENEB partners were determined with EPR/alanine dosimetry system. Dosimeters were irradiated in the same conditions as blood samples. A short survey was also performed to collect the information needed for the data analysis and evaluate the diversity of practices. RESULTS: For most of partners the deviation of delivered dose from the targeted dose remains below 10%. Deviations larger than 10% were observed for five facilities out of 21. Origins of the largest discrepancies were identified. Correction actions were evaluated as satisfactory. The re-evaluation of some ILC results for the fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC) assays has been performed leading to an improvement of the overall performances. CONCLUSIONS: This work has shown the importance of dosimetry in radiobiology studies and the needs of harmonization, standardization in irradiation and dosimetry practices and educational training for biologists using ionizing radiation.


Assuntos
Calibragem/normas , Análise Citogenética/normas , Laboratórios/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde/normas , Exposição à Radiação/análise , Monitoramento de Radiação/normas , Análise Citogenética/estatística & dados numéricos , Europa (Continente) , Humanos , Laboratórios/normas , Guias de Prática Clínica como Assunto , Doses de Radiação , Monitoramento de Radiação/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Int J Radiat Biol ; 93(1): 136-141, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27557790

RESUMO

PURPOSE: To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems. MATERIALS AND METHODS: A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties. The survey focused on several main areas: laboratory's general information, country and staff involved in biological and physical dosimetry; retrospective assays used, the number of assays available per laboratory and other information related to biodosimetry and emergency preparedness. Following technical intercomparisons amongst RENEB members, an update of the survey was performed one year later concerning the staff and the available assays. CONCLUSIONS: The analysis of RENEB questionnaires allowed a detailed assessment of existing capacity of the RENEB network to respond to nuclear and radiological emergencies. This highlighted the key importance of international cooperation in order to guarantee an effective and timely response in the event of radiological or nuclear accidents involving a considerable number of casualties. The deployment of the scientific and technical capabilities existing within the RENEB network members seems mandatory, to help other countries with less or no capacity for biological or physical dosimetry, or countries overwhelmed in case of a radiological or nuclear accident involving a large number of individuals.


Assuntos
Pesquisa Biomédica/organização & administração , Planejamento em Desastres/organização & administração , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Liberação Nociva de Radioativos , Gestão da Segurança/organização & administração , Europa (Continente) , Modelos Organizacionais , Radiobiologia/organização & administração
8.
Int J Radiat Biol ; 93(1): 75-80, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559844

RESUMO

PURPOSE: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. MATERIALS AND METHODS: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. RESULTS: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). CONCLUSIONS: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.


Assuntos
Planejamento em Desastres/organização & administração , Monitoramento de Radiação/métodos , Liberação Nociva de Radioativos , Radiobiologia/educação , Gestão da Segurança/organização & administração , Triagem/organização & administração , Europa (Continente)
9.
Int J Radiat Biol ; 93(1): 65-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27584947

RESUMO

PURPOSE: In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. MATERIALS AND METHODS: OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. RESULTS: OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. CONCLUSIONS: Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.


Assuntos
Bioensaio/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Exposição à Radiação/análise , Dosimetria Termoluminescente/instrumentação , Triagem/métodos , Bioensaio/normas , Espectroscopia de Ressonância de Spin Eletrônica/normas , Desenho de Equipamento , Análise de Falha de Equipamento , Europa (Continente) , Humanos , Linfócitos/efeitos da radiação , Garantia da Qualidade dos Cuidados de Saúde , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas , Dosimetria Termoluminescente/normas , Triagem/normas
10.
Radiat Environ Biophys ; 53(2): 311-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24671362

RESUMO

This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37-0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3-3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.


Assuntos
Telefone Celular , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Vidro , Radiometria/métodos , Calibragem , Humanos , Estatística como Assunto
11.
Ann Ist Super Sanita ; 45(3): 287-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19861734

RESUMO

Dosimetry based on the detection by electron paramagnetic resonance (EPR) spectroscopy of ionizing radiation-induced radicals is an established method for the retrospective dosimetry of past exposures and the dosimetry of potentially exposed persons in radiological emergencies. The dose is estimated by measuring the physical damage induced in materials contained in objects placed on or next to the potentially exposed person. The aim of this paper is to survey the current literature about methodologies and materials that have been proposed for EPR dosimetry, in order to identify those that could be suitable for population triage according to criteria such as ubiquity, non invasiveness and easy sample collection, presence of a post-irradiation EPR signal, negligible background signal, linearity of dose-response relationship, minimum detection limit and post-irradiation signal stability. The paper will survey the features of sugar, plastics, glass, clothing tissues, and solid biological tissues (nails, hair and calcified tissues).


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Radiometria/métodos , Humanos , Liberação Nociva de Radioativos , Triagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...