Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 799636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634329

RESUMO

Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.


Assuntos
Melanoma Experimental , Neoplasias Cutâneas , Animais , Metilação de DNA , Histonas/metabolismo , Camundongos , Modelos Teóricos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Vacinação
2.
Mol Cancer Ther ; 21(7): 1136-1148, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499391

RESUMO

Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro. Melanoma-bearing mice received fractionated low and high-dose TRT via tumor targeting anti-human CD20 sdAbs, as opposed to control sdAbs. Tumor growth was delayed with both doses. Low- and high-dose TRT increased IL10 serum levels. Low-dose TRT also decreased CCL5 serum levels. At the tumor, high-dose TRT induced a type I IFN gene signature, while low-dose TRT induced a proinflammatory gene signature. Low- and high-dose TRT increased the percentage of PD-L1pos and PD-L2pos myeloid cells in tumors with a marked increase in alternatively activated macrophages after high-dose TRT. The percentage of tumor-infiltrating T cells was not changed, yet a modest increase in ovalbumin-specific CD8pos T-cells was observed after low-dose TRT. Contradictory, low and high-dose TRT decreased CD4pos Th1 cells in addition to double negative T cells. In conclusion, these data suggest that low and high-dose TRT induce distinct immunologic changes, which might serve as an anchoring point for combination therapy.


Assuntos
Melanoma Experimental , Anticorpos de Domínio Único , Animais , Antígenos CD20 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Lutécio , Melanoma Experimental/patologia , Camundongos , Ovalbumina , Radioisótopos/uso terapêutico
3.
Front Immunol ; 13: 811867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493461

RESUMO

Immune checkpoint blockade (ICB) of the PD-1 pathway revolutionized the survival forecast for advanced non-small cell lung cancer (NSCLC). Yet, the majority of PD-L1+ NSCLC patients are refractory to anti-PD-L1 therapy. Recent observations indicate a pivotal role for the PD-L1+ tumor-infiltrating myeloid cells in therapy failure. As the latter comprise a heterogenous population in the lung tumor microenvironment, we applied an orthotopic Lewis Lung Carcinoma (LLC) model to evaluate 11 different tumor-residing myeloid subsets in response to anti-PD-L1 therapy. While we observed significantly reduced fractions of tumor-infiltrating MHC-IIlow macrophages and monocytes, serological levels of TNF-α restored in lung tumor-bearing mice. Notably, we demonstrated in vivo and in vitro that anti-PD-L1 therapy mediated a monocyte-specific production of, and response to TNF-α, further accompanied by their significant upregulation of CD80, VISTA, LAG-3, SIRP-α and TIM-3. Nevertheless, co-blockade of PD-L1 and TNF-α did not reduce LLC tumor growth. A phenomenon that was partly explained by the observation that monocytes and TNF-α play a Janus-faced role in anti-PD-L1 therapy-mediated CTL stimulation. This was endorsed by the observation that monocytes appeared crucial to effectively boost T cell-mediated LLC killing in vitro upon combined PD-L1 with LAG-3 or SIRP-α blockade. Hence, this study enlightens the biomarker potential of lung tumor-infiltrated monocytes to define more effective ICB combination strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/patologia , Camundongos , Monócitos , Microambiente Tumoral , Fator de Necrose Tumoral alfa/uso terapêutico
4.
Mol Ther Methods Clin Dev ; 22: 172-182, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485603

RESUMO

Monoclonal antibodies that target the inhibitory immune checkpoint axis consisting of programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have changed the immune-oncology field. We identified K2, an anti-human PD-L1 single-domain antibody fragment, that can enhance T cell activation and tumor cell killing. In this study, the potential of different K2 formats as immune checkpoint blocking medicines was evaluated using a gene-based delivery approach. We showed that 2K2 and 3K2, a bivalent and trivalent K2 format generated using a 12 GS (glycine-serine) linker, were 313- and 135-fold more potent in enhancing T cell receptor (TCR) signaling in PD-1POS cells than was monovalent K2. We further showed that bivalent constructs generated using a 30 GS linker or disulfide bond were 169- and 35-fold less potent in enhancing TCR signaling than was 2K2. 2K2 enhanced tumor cell killing in a 3D melanoma model, albeit to a lesser extent than avelumab. Therefore, an immunoglobulin (Ig)G1 antibody-like fusion protein was generated, referred to as K2-Fc. K2-Fc was significantly better than avelumab in enhancing tumor cell killing in the 3D melanoma model. Overall, this study describes K2-based immune checkpoint medicines, and it highlights the benefit of an IgG1 Fc fusion to K2 that gains bivalency, effector functions, and efficacy.

5.
Oncoimmunology ; 7(10): e1484981, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288346

RESUMO

Immune evasion is an important driver of disease progression in the plasma cell malignancy multiple myeloma. Recent work highlights the potential of epigenetic modulating agents as tool to enhance anti-tumor immunity. The immune modulating effects of the combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor in multiple myeloma is insufficiently characterized. Therefore, we used the murine immunocompetent 5T33MM model to investigate hallmarks of immunogenic cell death as well as alterations in the immune cell constitution in the bone marrow of diseased mice in response to the DNA methyltransferase inhibitor decitabine and the histone deacetylase inhibitor quisinostat. Vaccination of mice with 5T33 cells treated with epigenetic compounds delayed tumor development upon a subsequent tumor challenge. In vitro, epigenetic treatment induced ecto-calreticulin and CD47, as well as a type I interferon response. Moreover, treated 5T33vt cells triggered dendritic cell maturation. The combination of decitabine and quisinostat in vivo resulted in combinatory anti-myeloma effects. In vivo, epigenetic treatment increased tumoral ecto-calreticulin and decreased CD47 and PD-L1 expression, increased dendritic cell maturation and reduced CD11b positive cells. Moreover, epigenetic treatment induced a temporal increase in presence of CD8-positive and CD4-positive T cells with naive and memory-like phenotypes based on CD62L and CD44 expression levels, and reduced expression of exhaustion markers PD-1 and TIM3. In conclusion, a combination of a DNA methyltransferase inhibitor and a histone deacetylase inhibitor increased the immunogenicity of myeloma cells and altered the immune cell constitution in the bone marrow of myeloma-bearing mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...