Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 6(7): 512-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558428

RESUMO

Transition-metal dopants such as Mn determine the ferromagnetism in dilute magnetic semiconductors such as Ga(1-x)Mn(x)As. Recently, the acceptor states of Mn dopants in GaAs were found to be highly anisotropic owing to the symmetry of the host crystal. Here, we show how the shape of such a state can be modified by local strain. The Mn acceptors near InAs quantum dots are mapped at room temperature by scanning tunnelling microscopy. Dramatic distortions and a reduction in the symmetry of the wavefunction of the hole bound to the Mn acceptor are observed originating from strain induced by quantum dots. Calculations of the acceptor-state wavefunction in the presence of strain, within a tight-binding model and within an effective-mass model, agree with the experimentally observed shape. The magnetic easy axes of strained lightly doped Ga(1-x)Mn(x)As can be explained on the basis of the observed local density of states for the single Mn spin.

2.
Phys Rev Lett ; 95(25): 256402, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16384482

RESUMO

The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show that the crosslike shape of the Mn-acceptor wave function in GaAs persists even at very short Mn-Mn spatial separations. The resilience of the Mn-acceptor wave function to high doping levels suggests that ferromagnetism in GaMnAs is strongly influenced by impurity-band formation. The envelope-function and tight-binding models predict similarly anisotropic overlaps of the Mn wave functions for Mn-Mn pairs. This anisotropy implies differing Curie temperatures for Mn delta-doped layers grown on differently oriented substrates.

3.
Phys Rev Lett ; 95(10): 107001, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16196952

RESUMO

We have studied magnetotransport in arrays of niobium filled grooves in an InAs/Al(x)Ga(1-x)Sb heterostructure. The critical field of up to 2.6 T permits one to enter the quantum Hall regime. In the superconducting state, we observe strong magnetoresistance oscillations, whose amplitude exceeds the Shubnikov-de Haas oscillations by a factor of about 2, when normalized to the background. Additionally, we find that above a geometry-dependent magnetic field value the sample in the superconducting state has a higher longitudinal resistance than in the normal state. Both observations can be explained with edge channels populated with electrons and Andreev-reflected holes.

4.
Phys Rev Lett ; 92(25 Pt 1): 256601, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15245041

RESUMO

The relative strengths of Rashba and Dresselhaus terms describing the spin-orbit coupling in semiconductor quantum well (QW) structures are extracted from photocurrent measurements on n-type InAs QWs containing a two-dimensional electron gas (2DEG). This novel technique makes use of the angular distribution of the spin-galvanic effect at certain directions of spin orientation in the plane of a QW. The ratio of the relevant Rashba and Dresselhaus coefficients can be deduced directly from experiment and does not relay on theoretically obtained quantities. Thus our experiments open a new way to determine the different contributions to spin-orbit coupling.

5.
Phys Rev Lett ; 92(21): 216806, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15245308

RESUMO

The wave function of a hole bound to an individual Mn acceptor in GaAs is spatially mapped by scanning tunneling microscopy at room temperature and an anisotropic, crosslike shape is observed. The spatial structure is compared with that from an envelope-function, effective mass model and from a tight-binding model. This demonstrates that anisotropy arising from the cubic symmetry of the GaAs crystal produces the crosslike shape for the hole wave function. Thus the coupling between Mn dopants in GaMnAs mediated by such holes will be highly anisotropic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...