Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316087

RESUMO

Human PRPF39 is a homolog of the yeast Prp39 and Prp42 paralogs. We have previously shown that human PRPF39 forms a homodimer that interacts with the CTD of U1C, mirroring the yeast Prp39/Prp42 heterodimer. We demonstrate here that PRPF39 knockdown in HEK293 cells affects many alternative splicing events primarily by reducing the usage of weak 5'ss. Additionally, PRPF39 preferentially binds to a GC-rich RNA, likely at the interface between its NTD and CTD. These data indicate that PRPF39 potentially recruits U1 snRNP to a weak 5' ss, serving as a previously unrecognized alternative splicing factor. We further demonstrate that human TIA1 binds to U1C through its RRM1 and RRM3+Q domains but has no significant binding to PRPF39. Finally, all three human LUC7L isoforms directly interact with U1C. These results reveal significant parallels to the yeast U1 snRNP structure and support the use of yeast U1 snRNP as a model for understanding the mechanism of human alternative splicing.

2.
Trends Biochem Sci ; 46(3): 225-238, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272784

RESUMO

In eukaryotic cells, pre-mRNA splicing is catalyzed by the spliceosome, a highly dynamic molecular machinery that undergoes dramatic conformational and compositional rearrangements throughout the splicing cycle. These crucial rearrangements are largely driven by eight DExD/H-box RNA helicases. Interestingly, the four helicases participating in the late stages of splicing are all DEAH-box helicases that share structural similarities. This review aims to provide an overview of the structure and function of these DEAH-box helicases, including new information provided by recent cryo-electron microscopy structures of the spliceosomal complexes.


Assuntos
RNA Helicases DEAD-box , Precursores de RNA , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , Precursores de RNA/genética , Splicing de RNA , Spliceossomos/metabolismo
3.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059760

RESUMO

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal/genética , Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Répteis/genética , Animais , Evolução Biológica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/fisiologia , Répteis/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
4.
Nucleic Acids Res ; 47(11): 5867-5879, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30949712

RESUMO

In the yeast U1 snRNP the Prp39/Prp42 heterodimer is essential for early steps of spliceosome assembly. In metazoans no Prp42 ortholog exists, raising the question how the heterodimer is functionally substituted. Here we present the crystal structure of murine PRPF39, which forms a homodimer. Structure-guided point mutations disrupt dimer formation and inhibit splicing, manifesting the homodimer as functional unit. PRPF39 expression is controlled by NMD-inducing alternative splicing in mice and human, suggesting a role in adapting splicing efficiency to cell type specific requirements. A phylogenetic analysis reveals coevolution of shortened U1 snRNA and the absence of Prp42, which correlates with overall splicing complexity in different fungi. While current models correlate the diversity of spliceosomal proteins with splicing complexity, our study highlights a contrary case. We find that organisms with higher splicing complexity have substituted the Prp39/Prp42 heterodimer with a PRPF39 homodimer.


Assuntos
Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteína Nuclear Pequena U1/química , Proteínas de Saccharomyces cerevisiae/química , Processamento Alternativo , Animais , Linfócitos T CD8-Positivos/citologia , Dimerização , Células HEK293 , Humanos , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta , Filogenia , Mutação Puntual , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo
5.
J Immunol Methods ; 420: 18-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25825375

RESUMO

Serological differentiation between infection and vaccination depends on the detection of pathogen specific antibodies for an epitope that is modified or lacking in a vaccine. Here we describe a new assay principle that is based on differences in the binding properties of epitope specific antibodies. C-DIVA is a potent Classical swine fever vaccine candidate that differs from the parental C-strain life attenuated vaccine in the highly immunogenic TAVSPTTLR epitope by the deletion of two and the mutation of one amino acid (TAGSΔΔTLR). We show that C-DIVA vaccination elicits antibodies with high affinity for both the TAGSΔΔTLR and TAVSPTTLR epitope, whereas infection elicits only TAVSPTTLR specific antibodies. Differentiation is achieved with a double competition assay with negative selection for antibodies with affinity for the TAGSΔΔTLR epitope followed by positive selection for antibodies with affinity for the TAVSPTTLR epitope. Our findings add a new strategy for the development of marker vaccines and their accompanying discrimination assays and offer an alternative to the devastating stamping out policy for Classical swine fever.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/imunologia , Epitopos/imunologia , Vacinas Virais/imunologia , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Peste Suína Clássica/prevenção & controle , Suínos , Vacinas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...