Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(1): 50-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203732

RESUMO

Metabolic rewiring is a hallmark of cancer that supports tumor growth, survival, and chemotherapy resistance. Although normal cells often rely on extracellular serine and glycine supply, a significant subset of cancers becomes addicted to intracellular serine/glycine synthesis, offering an attractive drug target. Previously developed inhibitors of serine/glycine synthesis enzymes did not reach clinical trials due to unfavorable pharmacokinetic profiles, implying that further efforts to identify clinically applicable drugs targeting this pathway are required. In this study, we aimed to develop therapies that can rapidly enter the clinical practice by focusing on drug repurposing, as their safety and cost-effectiveness have been optimized before. Using a yeast model system, we repurposed two compounds, sertraline and thimerosal, for their selective toxicity against serine/glycine synthesis-addicted breast cancer and T-cell acute lymphoblastic leukemia cell lines. Isotope tracer metabolomics, computational docking, enzymatic assays, and drug-target interaction studies revealed that sertraline and thimerosal inhibit serine/glycine synthesis enzymes serine hydroxymethyltransferase and phosphoglycerate dehydrogenase, respectively. In addition, we demonstrated that sertraline's antiproliferative activity was further aggravated by mitochondrial inhibitors, such as the antimalarial artemether, by causing G1-S cell-cycle arrest. Most notably, this combination also resulted in serine-selective antitumor activity in breast cancer mouse xenografts. Collectively, this study provides molecular insights into the repurposed mode-of-action of the antidepressant sertraline and allows to delineate a hitherto unidentified group of cancers being particularly sensitive to treatment with sertraline. Furthermore, we highlight the simultaneous inhibition of serine/glycine synthesis and mitochondrial metabolism as a novel treatment strategy for serine/glycine synthesis-addicted cancers.


Assuntos
Antidepressivos/farmacologia , Neoplasias da Mama/patologia , Reposicionamento de Medicamentos , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina/biossíntese , Serina/sangue , Sertralina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glicina Hidroximetiltransferase/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Acoplamento Molecular , Fosfoglicerato Desidrogenase/metabolismo , Timerosal/farmacologia
2.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690639

RESUMO

The occurrence and recurrence of mucosal biofilm-related Candida infections, such as oral and vulvovaginal candidiasis, are serious clinical issues. Vaginal infections caused by Candida spp., for example, affect 70 to 75% of women at least once during their lives. Miconazole (MCZ) is the preferred topical treatment against these fungal infections, yet it has only moderate antibiofilm activity. Through screening of a drug-repurposing library, we identified the quaternary ammonium compound domiphen bromide (DB) as an MCZ potentiator against Candida biofilms. DB displayed synergistic anti-Candida albicans biofilm activity with MCZ, reducing the number of viable biofilm cells 1,000-fold. In addition, the MCZ-DB combination also resulted in significant killing of biofilm cells of azole-resistant C. albicans, C. glabrata, and C. auris isolates. In vivo, the MCZ-DB combination had significantly improved activity in a vulvovaginal candidiasis rat model compared to that of single-compound treatments. Data from an artificial evolution experiment indicated that the development of resistance against the combination did not occur, highlighting the potential of MCZ-DB combination therapy to treat Candida biofilm-related infections.


Assuntos
Candida , Miconazol , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Candida albicans , Feminino , Humanos , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário , Ratos
3.
J Biomed Mater Res B Appl Biomater ; 107(6): 1908-1919, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30549192

RESUMO

Biofilms, especially those formed by Staphylococcus aureus, play a key role in the development of orthopedic implant infections. Eradication of these infections is challenging due to the elevated tolerance of biofilm cells against antimicrobial agents. In this study, we developed an antibiofilm coating consisting of 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine, designated as LC0024, covalently bound to a titanium implant surface (LC0024-Ti). We showed in vitro that the LC0024-Ti surface reduces biofilm formation of S. aureus in a specific manner without reducing the planktonic cells above the biofilm, as evaluated by plate counting and fluorescence microscopy. The advantage of compounds that only inhibit biofilm formation without affecting the viability of the planktonic cells, is that reduced development of bacterial resistance is expected. To determine the antibiofilm activity of LC0024-Ti surfaces in vivo, a biomaterial-associated murine infection model was used. The results indicated a significant reduction in S. aureus biofilm formation (up to 96%) on the LC0024-Ti substrates compared to pristine titanium controls. Additionally, we found that the LC0024-Ti substrates did not affect the attachment and proliferation of human cells involved in osseointegration and bone repair. In summary, our results emphasize the clinical potential of covalent coatings of LC0024 on titanium implant surfaces to reduce the risk of orthopedic implant infections. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1908-1919, 2019.


Assuntos
Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Imidazóis , Teste de Materiais , Staphylococcus aureus/fisiologia , Titânio , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Camundongos , Titânio/química , Titânio/farmacologia
4.
Peptides ; 109: 33-38, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30176261

RESUMO

We report here on the structure-activity relationship study of a 14 amino acid fragment of the cathelicidin-related antimicrobial peptide (CRAMP), CRAMP20-33 (KKIGQKIKNFFQKL). It showed activity against Escherichia coli and filamentous fungi with IC50 values below 30 µM and 10 µM, respectively. CRAMP20-33 variants with glycine at position 23 substituted by phenylalanine, leucine or tryptophan showed 2- to 4-fold improved activity against E. coli but not against filamentous fungi. Furthermore, the most active single-substituted peptide, CRAMP20-33 G23 W (IC50 = 2.3 µM against E. coli), showed broad-spectrum activity against Candida albicans, Staphylococcus epidermidis and Salmonella Typhimurium. Introduction of additional arginine substitutions in CRAMP20-33 G23 W, more specifically in CRAMP20-33 G23 W N28R or CRAMP20-33 G23 W Q31R, resulted in 3-fold increased activity against S. epidermidis (IC50 = 4 µM and 4.8 µM, respectively) as compared to CRAMP20-33 G23 W (IC50 = 15.1 µM) but not against the other pathogens tested. In general, double-substituted variants were non-toxic for human HepG2 cells, pointing to their therapeutic potential.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Relação Estrutura-Atividade , Catelicidinas
5.
ACS Appl Mater Interfaces ; 9(10): 8533-8546, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28211996

RESUMO

One prominent cause of implant failure is infection; therefore, research is focusing on developing surface coatings that render the surface resistant to colonization by micro-organisms. Permanently attached coatings of antimicrobial molecules are of particular interest because of the reduced cytoxicity and lower risk of developing resistance compared to controlled release coatings. In this study, we focus on the chemical grafting of bioactive molecules on titanium. To concentrate the molecules at the metallic implant surface, we propose electrophoretic deposition (EPD) applying alternating current (AC) signals with an asymmetrical wave shape. We show that for the model molecule bovine serum albumin (BSA), as well as for the clinically relevant antifungal lipopeptide caspofungin (CASP), the deposition yield is drastically improved by superimposing a DC offset in the direction of the high-amplitude peak of the AC signal. Additionally, in order to produce immobilized CASP coatings, this experimental AC/DC-EPD method is combined with an established surface activation protocol. Principle component analysis (PCA) of time-of-flight secondary ion mass spectrometry (ToF-SIMS) data confirm the immobilization of CASP with higher yield as compared to a diffusion-controlled process, and higher purity than the clinical CASP starting suspensions. Scratch testing data indicate good coating adhesion. Importantly, the coatings remain active against the fungal pathogen C. albicans as shown by in vitro biofilm experiments. In summary, this paper delivers a proof-of-concept for the application of AC-EPD as a fast grafting tool for antimicrobial molecules without compromising their activities.


Assuntos
Titânio/química , Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Eletricidade , Eletroforese , Próteses e Implantes
6.
FEMS Microbiol Lett ; 364(2)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087617

RESUMO

Oral infections are among the most common diseases worldwide. Many protocols for the prevention and treatment of oral infections have been described, yet no golden standard has been developed so far. The antiseptic chlorhexidine and antibiotics are often used in these treatment procedures. However, long-term use of chlorhexidine can lead to side effects and extensive use of antibiotics can promote the development of antibiotic-resistant bacteria, which in turn can compromise the effectiveness of the treatment. Consequently, it remains important to search for new antibacterial agents for the treatment of oral infections. In this study, we report on the antibacterial activity of the antiasthma drug zafirlukast against oral pathogens Porphyromonas gingivalis and Streptococcus mutans. Furthermore, its activity against oral biofilms grown on titanium surfaces was confirmed. In addition, we demonstrated that zafirlukast displays no cytotoxicity against human osteoblasts. Combined, this study paves the way for further research to determine the potential of zafirlukast to be used as a new antibiotic against oral pathogens.


Assuntos
Antiasmáticos/farmacologia , Antibacterianos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Compostos de Tosil/farmacologia , Antiasmáticos/toxicidade , Antibacterianos/toxicidade , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Humanos , Indóis , Testes de Sensibilidade Microbiana , Osteoblastos/efeitos dos fármacos , Fenilcarbamatos , Porphyromonas gingivalis/fisiologia , Streptococcus mutans/fisiologia , Sulfonamidas
7.
Clin Exp Dent Res ; 3(2): 69-76, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29744181

RESUMO

Porphyromonas gingivalis is a major pathogen involved in oral diseases such as periodontitis and peri-implantitis. Management of these diseases typically includes mechanical debridement of the colonized surfaces followed by application of antiseptics or antibiotics. Disadvantages associated with the use of antiseptics and the growing worldwide problem of antibiotic resistance have necessitated the search for alternative agents. In this study, the antibacterial and antibiofilm properties of AM404, an active metabolite of paracetamol, were tested against P. gingivalis and other bacterial pathogens. The activity of AM404 was tested against 10 bacteria, including both oral and nonoral human pathogens. The minimal inhibitory concentration (MIC) of AM404 was determined by measuring optical density (OD) values. The minimum biofilm inhibitory concentration (MBIC) was detected by crystal violet staining. The activity of structural analogs of AM404 was tested by MIC determinations. The effect of AM404 on P. gingivalis biofilms formed on titanium disks as a model for dental implants was evaluated by colony forming unit counting. Potential cytotoxicity of AM404 towards HEK-293 (human embryonic kidney cells), HepG2 (human hepatoma cells), IEC-6 (rat intestinal cells), and Panc-1 cells (pancreatic cancer cells) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. To get more insight in the mode of action of AM404, we used the fluorescent dyes N-phenyl-1-napthylamine and SYTOX green to investigate outer and inner membrane damage of P. gingivalis induced by AM404, respectively. Of all tested pathogens, AM404 only inhibited growth and biofilm formation of P. gingivalis. Moreover, it showed potent activity against P. gingivalis biofilms formed on titanium surfaces. A structure-activity analysis demonstrated that the unsaturated carbon chain is essential for its antibacterial activity. Importantly, AM404 was not toxic towards the tested mammalian cells up to concentrations approaching 4× the MIC. Membrane damage assays using fluorescent probes N-phenyl-1-napthylamine and SYTOX green revealed that membrane permeabilization presumably is the primary antibacterial mode of action of AM404. Collectively, our results suggest that AM404 has the potential to be used for the development of new drugs specifically targeting P. gingivalis-related infections.

8.
Artigo em Inglês | MEDLINE | ID: mdl-27993858

RESUMO

The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 µM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 µM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Hormonais/farmacologia , Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Toremifeno/farmacologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Placa Dentária/tratamento farmacológico , Placa Dentária/microbiologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana Múltipla/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/ultraestrutura , Streptococcus mutans/metabolismo , Streptococcus mutans/ultraestrutura , Titânio/análise
9.
Antimicrob Agents Chemother ; 60(11): 6483-6497, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550355

RESUMO

We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Imidazóis/farmacologia , Anti-Infecciosos/síntese química , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Imidazóis/síntese química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Relação Estrutura-Atividade
10.
Sci Rep ; 6: 27463, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27272719

RESUMO

We performed a whole-transcriptome analysis of miconazole-treated Candida albicans biofilms, using RNA-sequencing. Our aim was to identify molecular pathways employed by biofilm cells of this pathogen to resist action of the commonly used antifungal miconazole. As expected, genes involved in sterol biosynthesis and genes encoding drug efflux pumps were highly induced in biofilm cells upon miconazole treatment. Other processes were affected as well, including the electron transport chain (ETC), of which eight components were transcriptionally downregulated. Within a diverse set of 17 inhibitors/inducers of the transcriptionally affected pathways, the ETC inhibitors acted most synergistically with miconazole against C. albicans biofilm cells. Synergy was not observed for planktonically growing C. albicans cultures or when biofilms were treated in oxygen-deprived conditions, pointing to a biofilm-specific oxygen-dependent tolerance mechanism. In line, a correlation between miconazole's fungicidal action against C. albicans biofilm cells and the levels of superoxide radicals was observed, and confirmed both genetically and pharmacologically using a triple superoxide dismutase mutant and a superoxide dismutase inhibitor N-N'-diethyldithiocarbamate, respectively. Consequently, ETC inhibitors that result in mitochondrial dysfunction and affect production of reactive oxygen species can increase miconazole's fungicidal activity against C. albicans biofilm cells.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Miconazol/farmacologia , Superóxidos/metabolismo , Candida albicans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
PLoS One ; 11(5): e0155139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167126

RESUMO

Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Carbazóis/química , Carbazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Bacterianos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipossomos/química , Substâncias Macromoleculares/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Fosfolipídeos/metabolismo , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA , Staphylococcus aureus/genética , Fatores de Tempo
12.
J Orthop Res ; 34(12): 2191-2198, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27003909

RESUMO

Biofilm-associated infections, particularly those caused by Staphylococcus aureus, are a major cause of implant failure. Covalent coupling of broad-spectrum antimicrobials to implants is a promising approach to reduce the risk of infections. In this study, we developed titanium substrates on which the recently discovered antibacterial agent SPI031, a N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol, was covalently linked (SPI031-Ti). We found that SPI031-Ti substrates prevent biofilm formation of S. aureus and Pseudomonas aeruginosa in vitro, as quantified by plate counting and fluorescence microscopy. To test the effectiveness of SPI031-Ti substrates in vivo, we used an adapted in vivo biomaterial-associated infection model in mice in which SPI031-Ti substrates were implanted subcutaneously and subsequently inoculated with S. aureus. Using this model, we found a significant reduction in biofilm formation (up to 98%) on SPI031-Ti substrates compared to control substrates. Finally, we demonstrated that the functionalization of the titanium surfaces with SPI031 did not influence the adhesion and proliferation of human cells important for osseointegration and bone repair. In conclusion, these data demonstrate the clinical potential of SPI031 to be used as an antibacterial coating for implants, thereby reducing the incidence of implant-associated infections. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2191-2198, 2016.


Assuntos
Anti-Infecciosos/uso terapêutico , Carbazóis/uso terapêutico , Infecções Relacionadas à Prótese/prevenção & controle , Animais , Anti-Infecciosos/farmacologia , Carbazóis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Titânio
13.
J Antimicrob Chemother ; 71(4): 936-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26702917

RESUMO

OBJECTIVES: Biofilm-associated implant infections represent a serious public health problem. Covalent immobilization of antimicrobial agents on titanium (Ti), thereby inhibiting biofilm formation of microbial pathogens, is a solution to this problem. METHODS: Vancomycin (VAN) and caspofungin (CAS) were covalently bound on Ti substrates using an improved processing technique adapted to large-scale coating of implants. Resistance of the VAN-coated Ti (VAN-Ti) and CAS-coated Ti (CAS-Ti) substrates against in vitro biofilm formation of the bacterium Staphylococcus aureus and the fungal pathogen Candida albicans was determined by plate counting and visualized by confocal laser scanning microscopy. The efficacy of the coated Ti substrates was also tested in vivo using an adapted biomaterial-associated murine infection model in which control-Ti, VAN-Ti or CAS-Ti substrates were implanted subcutaneously and subsequently challenged with the respective pathogens. The osseointegration potential of VAN-Ti and CAS-Ti was examined in vitro using human bone marrow-derived stromal cells, and for VAN-Ti also in a rat osseointegration model. RESULTS: In vitro biofilm formation of S. aureus and C. albicans on VAN-Ti and CAS-Ti substrates, respectively, was significantly reduced compared with biofilm formation on control-Ti. In vivo, we observed over 99.9% reduction in biofilm formation of S. aureus on VAN-Ti substrates and 89% reduction in biofilm formation of C. albicans on CAS-Ti substrates, compared with control-Ti substrates. The coated substrates supported osseointegration in vitro and in vivo. CONCLUSIONS: These data demonstrate the clinical potential of covalently bound VAN and CAS on Ti to reduce microbial biofilm formation without jeopardizing osseointegration.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Candida albicans/fisiologia , Caspofungina , Linhagem Celular , Equinocandinas/farmacologia , Feminino , Humanos , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Osseointegração , Próteses e Implantes/microbiologia , Staphylococcus aureus/fisiologia , Vancomicina/farmacologia
14.
Methods Mol Biol ; 1333: 67-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26468100

RESUMO

In contrast to planktonic cultures of the human fungal pathogen Candida albicans, C. albicans biofilms can contain a persister subpopulation that is tolerant to high concentrations of currently used antifungals. In this chapter, the method to determine the persister fraction in a C. albicans biofilm treated with an antifungal compound is described. To this end, a mature biofilm is developed and subsequently treated with a concentration series of the antifungal compound of interest. Upon incubation, the fraction of surviving biofilm cells is determined by plating and plotted versus the used concentrations of the antifungal compound. If a persister subpopulation in the biofilm is present, the dose-dependent killing of the biofilm cells results in a biphasic killing pattern.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana
15.
Expert Rev Anti Infect Ther ; 13(8): 973-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26070384

RESUMO

The human fungal opportunistic pathogen Candida albicans resides in the human gut, genitourinary tract and on the skin. The majority of infections caused by C. albicans are biofilm-related. In the first part of this review, we discuss new insights into C. albicans biofilm characteristics, concentrating on the extracellular matrix, phenotypic switching, efflux pumps and persister cells. It is widely accepted that this multicellular lifestyle is more resistant to traditional antifungal treatment compared to free-living cells. Therefore, much effort is put in the search for combinations of drugs leading to synergistic interactions against microbial biofilms to achieve lower effective doses of the drugs. In the second part of this manuscript, we review all recently identified compounds that act synergistically with azoles, echinocandins and/or polyenes against C. albicans biofilms.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Candidíase/tratamento farmacológico , Quimioterapia Combinada , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Humanos
16.
Antimicrob Agents Chemother ; 59(6): 3052-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753645

RESUMO

In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is significantly increased in a polymicrobial E. coli/C. albicans biofilm compared to its tolerance in an axenic E. coli biofilm. The increased ofloxacin tolerance of E. coli is mainly biofilm specific, as ofloxacin tolerance of E. coli is less pronounced in polymicrobial E. coli/C. albicans planktonic cultures. Moreover, we found that ofloxacin tolerance of E. coli decreased significantly when E. coli/C. albicans biofilms were treated with matrix-degrading enzymes such as the ß-1,3-glucan-degrading enzyme lyticase. In line with a role for ß-1,3-glucan in mediating ofloxacin tolerance of E. coli in a biofilm, we found that ofloxacin tolerance of E. coli increased even more in E. coli/C. albicans biofilms consisting of a high-ß-1,3-glucan-producing C. albicans mutant. In addition, exogenous addition of laminarin, a polysaccharide composed mainly of poly-ß-1,3-glucan, to an E. coli biofilm also resulted in increased ofloxacin tolerance. All these data indicate that ß-1,3-glucan from C. albicans increases ofloxacin tolerance of E. coli in an E. coli/C. albicans biofilm.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Escherichia coli/efeitos dos fármacos , Ofloxacino/farmacologia , beta-Glucanas/metabolismo , Antifúngicos/farmacologia , Candida albicans/ultraestrutura , Farmacorresistência Fúngica , Escherichia coli/ultraestrutura
17.
J Med Chem ; 58(3): 1502-12, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25585716

RESUMO

From a fungicidal screen, we identified 2-(2-oxo-morpholin-3-yl)-acetamide derivatives as fungicidal agents against Candida species, additionally characterized by antifungal activity against Aspergillus species. However, development of this series was hampered by low plasmatic stability. Introduction of a gem-dimethyl on the 6-position of the morpholin-2-one core led to considerable improvement in plasmatic stability while maintaining in vitro antifungal activity. Further optimization of the series resulted in the discovery of N-(biphenyl-3-ylmethyl)-2-(4-ethyl-6,6-dimethyl-2-oxomorpholin-3-yl)acetamide (87), which, in addition to fungicidal activity against Candida species, shows promising and broad antifungal in vitro activity against various fungi species, such as molds and dermatophytes. In vivo efficacy was also demonstrated in a murine model of systemic Candida albicans infection with a significant fungal load reduction in kidneys.


Assuntos
Acetamidas/farmacologia , Antifúngicos/farmacologia , Morfolinas/farmacologia , Acetamidas/síntese química , Acetamidas/química , Animais , Antifúngicos/síntese química , Antifúngicos/química , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Colloids Surf B Biointerfaces ; 126: 481-8, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25601097

RESUMO

Bone implants with open porosity enable fast osseointegration, but also present an increased risk of biofilm-associated infections. We design a novel implant material consisting of a mesoporous SiO2 diffusion barrier (pore diameter: 6.4 nm) with controlled drug release functionality integrated in a macroporous Ti load-bearing structure (fully interconnected open porosity: 30%; pore window size: 0.5-2.0 µm). Using an in vitro tool consisting of Ti/SiO2 disks in an insert set-up, through which molecules can diffuse from feed side to release side, a continuous release without initial burst effect of the antibiofilm compound toremifene is sustained for at least 9 days, while release concentrations (up to 17 µM daily) increase with feed concentrations (up to 4mM). Toremifene diffusivity through the SiO2 phase into H2O is estimated around 10(-13)m(2)/s, suggesting configurational diffusion through mesopores. Candida albicans biofilm growth on the toremifene-release side is significantly inhibited, establishing a proof-of-concept for the drug delivery functionality of mesoporous SiO2 incorporated into a high-strength macroporous Ti carrier. Next-generation implants made of this composite material and equipped with an internal reservoir (feed side) can yield long-term controlled release of antibiofilm compounds, effectively treating infections on the implant surface (release side) over a prolonged time.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Liberação Controlada de Fármacos , Dióxido de Silício/química , Titânio/química , Toremifeno/química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície
19.
Antimicrob Agents Chemother ; 59(1): 421-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367916

RESUMO

Mucosal biofilm-related fungal infections are very common, and the incidence of recurrent oral and vulvovaginal candidiasis is significant. As resistance to azoles (the preferred treatment) is occurring, we aimed at identifying compounds that increase the activity of miconazole against Candida albicans biofilms. We screened 1,600 compounds of a drug-repositioning library in combination with a subinhibitory concentration of miconazole. Synergy between the best identified potentiators and miconazole was characterized by checkerboard analyses and fractional inhibitory concentration indices. Hexachlorophene, pyrvinium pamoate, and artesunate act synergistically with miconazole in affecting C. albicans biofilms. Synergy was most pronounced for artesunate and structural homologues thereof. No synergistic effect could be observed between artesunate and fluconazole, caspofungin, or amphotericin B. Our data reveal enhancement of the antibiofilm activity of miconazole by artesunate, pointing to potential combination therapy consisting of miconazole and artesunate to treat C. albicans biofilm-related infections.


Assuntos
Antifúngicos/farmacologia , Artemisininas/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Miconazol/farmacologia , Anfotericina B/farmacologia , Artesunato , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Caspofungina , Sinergismo Farmacológico , Equinocandinas/farmacologia , Fluconazol/farmacologia , Hexaclorofeno/farmacologia , Lipopeptídeos , Miconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Compostos de Pirvínio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
20.
Bioorg Med Chem Lett ; 24(23): 5404-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25453797

RESUMO

Pseudomonas aeruginosa strains resistant towards all currently available antibiotics are increasingly encountered, raising the need for new anti-pseudomonal drugs. We therefore conducted a medium-throughput screen of a small-molecule collection resulting in the identification of the N-alkylated 3,6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol (MIC = 18.5 µg mL⁻¹). This compound, compound 1, is bacteriostatic towards a broad spectrum of Gram-positive and Gram-negative pathogens, including P. aeruginosa. Importantly, 1 also eradicates mature biofilms of P. aeruginosa. 1 displays no cytotoxicity against various human cell types, pointing to its potential for further development as a novel antibacterial drug.


Assuntos
Antibacterianos/uso terapêutico , Carbazóis/química , Pseudomonas aeruginosa/isolamento & purificação , Biofilmes , Carbazóis/análise , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...