Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504947

RESUMO

Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece, Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identification of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquaculture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential.


Assuntos
Aquicultura , Biotecnologia , Croácia , Região do Mediterrâneo , França
2.
Electromagn Biol Med ; 35(2): 126-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25577980

RESUMO

This work shows the effects of exposure to an electromagnetic field at 900 MHz on the catalytic activity of the enzymes lactoperoxidase (LPO) and horseradish peroxidase (HRP). Experimental evidence that irradiation causes conformational changes of the active sites and influences the formation and stability of the intermediate free radicals is documented by measurements of enzyme kinetics, circular dichroism spectroscopy (CD) and cyclic voltammetry.


Assuntos
Peroxidase do Rábano Silvestre/metabolismo , Lactoperoxidase/metabolismo , Micro-Ondas/efeitos adversos , Domínio Catalítico/efeitos da radiação , Peroxidase do Rábano Silvestre/química , Cinética , Lactoperoxidase/química
3.
Waste Manag ; 45: 325-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26239936

RESUMO

In the present work the recovery of indium and of the polarizing film from waste liquid crystal displays was experimentally investigated in the laboratory. First of all, the polarizing film was removed by employing a number of different techniques, including thermal and chemical treatments. Leaching of indium was then performed with HCl 6N, which allowed solubilisation of approximately 90% In (i.e. 260 mg In per kg of glass) at room temperature, without shredding. Indium recovery from the aqueous phase was then investigated through solvent extraction with polyethylene glycol (PEG)-based aqueous biphasic systems. Indium extraction tests through the PEG-ammonium sulphate-water system were conducted as a function of PEG concentration, salt concentration and molecular weight of PEG, using 1,10 phenanthroline as a ligand. The experimental results demonstrated that indium partitioning between the bottom (salt-rich) and the top (PEG-rich) phase is quite independent on the composition of the system, since 80-95% indium is extracted in the bottom phase and 5-20% in the top phase; it was also found that when PEG concentration is increased, the ratio between the bottom and the upper phase volumes decreases, resulting in an increase of indium concentration in the bottom phase (at [PEG]=25% w/w, indium concentration in the bottom phase is ∼30% higher than the initial concentration before the extraction).


Assuntos
Resíduo Eletrônico/análise , Índio/química , Cristais Líquidos/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos
4.
J Mass Spectrom ; 41(1): 98-102, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16317708

RESUMO

Diastereomeric clusters of general formula [MAB(2)](+) and [MA(2)B](+) (M = Li(I), Na(I), Ag(I), Ni(II)-H, or Cu(II)-H; A = (R)-(-)- and (S)-(+)-(1-aminopropyl)phosphonic acid; B = (1R)-(-)- and (1S)-(+)-(1-aminohexyl)phosphonic acid) have been readily generated in the electrospray ionization (ESI) source of a triple-quadrupole mass spectrometer and their collision-induced dissociation (CID) investigated. CID of diastereomeric complexes, e.g. [MA(S)(B(S))(2)](+) and [MA(R)(B(S))(2)](+), leads to fragmentation patterns characterized by R(homo) = [MA(S)B(S)](+)/[M(B(S))(2)](+) and R(hetero) = [MA(R)B(S)](+)/[M(B(S))(2)](+) abundance ratios, which depend upon the relative stability of the diastereomeric [MA(S)B(S)](+) and [MA(R)B(S)](+) complexes in the gas phase. The chiral resolution factor R(chiral) = R(homo)/R(hetero) is found to depend not only on the nature of the M ion but also on that of the fragmenting species, whether [MAB(2)](+) or [MA(2)B](+). The origin of this behavior is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...