Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(3): 102397, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393615

RESUMO

Adipose tissue plays a central role in age-related diseases. While RNAseq protocols exist for many tissues, few data have been generated with this technology to explore gene expression in adipocytes, particularly during aging. Here, we present a protocol to analyze the transcriptional changes that occur in adipose tissue during normal and accelerated aging in mouse models. We describe steps for genotyping, diet control, euthanasia, and dissection. We then detail RNA purification and genome-wide data generation and analysis. For complete details on the use and execution of this protocol, please refer to De Cauwer et al. (2022) iScience. Sep 16;25(10):105149.


Assuntos
Adipócitos , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Tecido Adiposo , Envelhecimento/genética , Modelos Animais de Doenças
2.
iScience ; 25(10): 105149, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185376

RESUMO

Age-related diseases are major concern in developed countries. To avoid disabilities that accompany increased lifespan, pharmaceutical approaches are considered. Therefore, appropriate animal models are required for a better understanding of aging processes and potential in vivo assays to evaluate the impact of molecules that may delay the occurrence of age-related diseases. Few mouse models exhibiting pathological aging exist, but currently, none of them reproducibly mimics human diseases like osteoporosis, cognitive dysfunctions or sarcopenia that can be seen in some, but not all, elders. Here, we describe the premature aging phenotypes of Dicer-deficient mature animals, which exhibit an overall deterioration of many organs and tissues (skin, heart, and adipose tissue) ultimately leading to a significant reduction of their lifespan. Molecular characterization of transcriptional responses focused on the adipose tissue suggested that both canonical and non-canonical functions of DICER are involved in this process and highlight potential actionable pathways to revert it.

3.
Am J Respir Cell Mol Biol ; 65(2): 167-175, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33798037

RESUMO

Septic shock and disseminated intravascular coagulation (DIC) are known to be characterized by an endothelial cell dysfunction. The molecular mechanisms underlying this relationship are, however, poorly understood. In this work, we aimed to investigate human circulating IFN-α in patients with septic shock-induced DIC and tested the potential role of endothelial Stat1 (signal transducer and activator of transcription 1) as a therapeutic target in a mouse model of sepsis. For this, circulating type I, type II, and type III IFNs and procoagulant microvesicles were quantified in a prospective cohort of patients with septic shock. Next, we used a septic shock model induced by cecal ligation and puncture in wild-type mice, in Ifnar1 (type I IFN receptor subunit 1)-knockout mice, and in Stat1 conditional knockout mice. In human samples, we observed higher concentrations of circulating IFN-α and IFN-α1 in patients with DIC compared with patients without DIC, whereas concentrations of IFN-ß, IFN-γ, IFN-λ1, IFN-λ2, and IFN-λ3 were not different. IFN-α concentration was positively correlated with CD105 microvesicle concentrations, reflecting endothelial injury. In Ifnar1-/- mice, cecal ligation and puncture did not induce septic shock and was characterized by lesser endothelial cell injury, with lower aortic inflammatory cytokine expression, endothelial inflammatory-related gene expression, and fibrinolysis. In mice in which Stat1 was specifically ablated in endothelial cells, a marked protection against sepsis was also observed, suggesting the relevance of an endothelium-targeted strategy. Our work highlights the key roles of type I IFNs as pathogenic players in septic shock-induced DIC and the potential pertinence of endothelial STAT1 as a therapeutic target.


Assuntos
Coagulação Intravascular Disseminada/metabolismo , Interferon-alfa/metabolismo , Fator de Transcrição STAT1/metabolismo , Choque Séptico/metabolismo , Transdução de Sinais , Idoso , Animais , Coagulação Intravascular Disseminada/genética , Feminino , Humanos , Interferon-alfa/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fator de Transcrição STAT1/genética , Choque Séptico/genética , Choque Séptico/terapia
4.
Theranostics ; 10(5): 2158-2171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104502

RESUMO

Rationale: The role of Monosodium Urate (MSU) crystals in gout pathophysiology is well described, as is the major impact of IL-1ß in the inflammatory reaction that constitutes the hallmark of the disease. However, despite the discovery of the NLRP3 inflammasome and its role as a Pattern Recognition Receptor linking the detection of a danger signal (MSU) to IL-1ß secretion in vitro, the precise mechanisms leading to joint inflammation in gout patients are still poorly understood. Methods: Acute urate crystal inflammation was obtained by subcutaneous injections of MSU crystals in mice. Symptoms were followed by scoring, cytokine quantification by ELISA and western blot, gene expression by RT-qPCR and RNAseq; Magnetic Resonance Imaging was also used to assess inflammation. Results: We provide an extensive clinical, biological and molecular characterization of an acute uratic inflammation mouse model which accurately mimics human gout. We report the efficacy of topical imiquimod treatment and its impact on Interferon-dependent down modulation of Il-1ß gene expression in this experimental model. Conclusion: Our work reveals several key features of MSU-dependent inflammation and identifies novel therapeutic opportunities for gout patients.


Assuntos
Gota/tratamento farmacológico , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Interleucina-1beta/efeitos dos fármacos , Ácido Úrico/efeitos adversos , Doença Aguda , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Administração Tópica , Animais , Antioxidantes/administração & dosagem , Antioxidantes/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Gota/metabolismo , Gota/patologia , Imiquimode/administração & dosagem , Imiquimode/uso terapêutico , Inflamação/diagnóstico , Inflamação/imunologia , Injeções Subcutâneas , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Knockout , Ácido Úrico/administração & dosagem
5.
Int J Oral Sci ; 12(1): 5, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32024813

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease affecting 1% of the world population and is characterized by chronic inflammation of the joints sometimes accompanied by extra-articular manifestations. K/BxN mice, originally described in 1996 as a model of polyarthritis, exhibit knee joint alterations. The aim of this study was to describe temporomandibular joint (TMJ) inflammation and damage in these mice. We used relevant imaging modalities, such as micro-magnetic resonance imaging (µMRI) and micro-computed tomography (µCT), as well as histology and immunofluorescence techniques to detect TMJ alterations in this mouse model. Histology and immunofluorescence for Col-I, Col-II, and aggrecan showed cartilage damage in the TMJ of K/BxN animals, which was also evidenced by µCT but was less pronounced than that seen in the knee joints. µMRI observations suggested an increased volume of the upper articular cavity, an indicator of an inflammatory process. Fibroblast-like synoviocytes (FLSs) isolated from the TMJ of K/BxN mice secreted inflammatory cytokines (IL-6 and IL-1ß) and expressed degradative mediators such as matrix metalloproteinases (MMPs). K/BxN mice represent an attractive model for describing and investigating spontaneous damage to the TMJ, a painful disorder in humans with an etiology that is still poorly understood.


Assuntos
Artrite Experimental/patologia , Artrite Reumatoide/patologia , Osso e Ossos/diagnóstico por imagem , Articulação Temporomandibular/diagnóstico por imagem , Articulação Temporomandibular/lesões , Microtomografia por Raio-X/métodos , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Metaloproteinase 8 da Matriz/imunologia , Camundongos , Camundongos Transgênicos , Articulação Temporomandibular/metabolismo , Tomografia Computadorizada por Raios X
6.
Front Immunol ; 9: 1647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087677

RESUMO

Loss-of-function or knockout mouse models have established a fundamental role for the RNAse III enzyme DICER1 in development and tissue morphogenesis and/or homeostasis. These functions are currently assumed to result mainly from the DICER1-dependent biogenesis of microRNAs which exhibit important gene expression regulatory properties. However, non-canonical DICER1 functions have recently emerged. These include interaction with the DNA damage response (DDR) pathway and the processing of cytotoxic non-coding RNAs, suggesting that DICER1 might also participate in the regulation of major cellular processes through miRNA-independent mechanisms. Recent findings indicated that reduced Dicer1 expression, which correlates with worsened symptoms in mouse models of joint inflammation, is also noted in fibroblast-like synoviocytes (FLS) harvested from rheumatoid arthritis (RA) patients, as opposed to FLS cultured from biopsies of osteoarthritic patients. In addition, low DICER1 levels are associated with the establishment of cellular stress and its associated responses, such as cellular senescence. Senescent and/or stressed cells are associated with an inflammatory secretome (cytokines and chemokines), as well as with "find-me" and "eat-me" signals which will attract and activate the innate immune compartment (NK cells, macrophages, and neutrophils) to be eliminated. Failure of this immunosurveillance mechanism and improper restauration of homeostasis could lead to the establishment of a systemic and chronic inflammatory state. In this review, we suggest that reduced DICER1 expression contributes to a vicious cycle during which accumulating inflammation and premature senescence, combined to inadequate innate immunity responses, creates the appropriate conditions for the initiation and/or progression of autoimmune-autoinflammatory diseases, such as RA.

7.
Trends Mol Med ; 24(4): 338-347, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519620

RESUMO

Rheumatoid arthritis (RA) is a multifactorial immune disease exhibiting diverse clinical responses to specific therapeutic agents. Such heterogeneity reflects variable activation of signaling pathways. Consequently, RA physiopathology has been linked to many immune cells and factors, with controversial observations for interferons (IFNs). In this opinion article, we review the roles of these cytokines and the cells that produce them in light of recent data: clinical observations showing that expression of IFN-dependent genes does not reflect RA activity and RA mouse models in which the stimulation of IFN-dependent pathways provided disease protection. We suggest that epicutaneous stimulation of the IFN network is an attractive possibility to limit neutrophil infiltration or activation, thus providing therapeutic benefits to RA patients refractory to current therapies.


Assuntos
Artrite Reumatoide/imunologia , Células Dendríticas/imunologia , Interferons/imunologia , Animais , Citocinas/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...