Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(720): eadi1617, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910601

RESUMO

The morbidity associated with pediatric medulloblastoma, in particular in patients who develop leptomeningeal metastases, remains high in the absence of effective therapies. Administration of substances directly into the cerebrospinal fluid (CSF) is one approach to circumvent the blood-brain barrier and focus delivery of drugs to the site of tumor. However, high rates of CSF turnover prevent adequate drug accumulation and lead to rapid systemic clearance and toxicity. Here, we show that PLA-HPG nanoparticles, made with a single-emulsion, solvent evaporation process, can encapsulate talazoparib, a PARP inhibitor (BMN-673). These degradable polymer nanoparticles improve the therapeutic index when delivered intrathecally and lead to sustained drug retention in the tumor as measured with PET imaging and fluorescence microscopy. We demonstrate that administration of these particles into the CSF, alone or in combination with systemically administered temozolomide, is a highly effective therapy for tumor regression and prevention of leptomeningeal spread in xenograft mouse models of medulloblastoma. These results provide a rationale for harnessing nanoparticles for the delivery of drugs limited by brain penetration and therapeutic index and demonstrate important advantages in tolerability and efficacy for encapsulated drugs delivered locoregionally.


Assuntos
Antineoplásicos , Neoplasias Cerebelares , Meduloblastoma , Nanopartículas , Criança , Humanos , Camundongos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Meduloblastoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Líquido Cefalorraquidiano
2.
medRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873422

RESUMO

Deuterium Metabolic Imaging (DMI) is a novel method that can complement traditional anatomical magnetic resonance imaging (MRI) of the brain. DMI relies on the MR detection of metabolites that become labeled with deuterium (2H) after administration of a deuterated substrate and can provide images with highly specific metabolic information. However, clinical adoption of DMI is complicated by its relatively long scan time. Here, we demonstrate a strategy to interleave DMI data acquisition with MRI that results in a comprehensive neuro-imaging protocol without adding scan time. The interleaved MRI-DMI routine includes four essential clinical MRI scan types, namely T1-weighted MP-RAGE, FLAIR, T2-weighted Imaging (T2W) and susceptibility weighted imaging (SWI), interwoven with DMI data acquisition. Phantom and in vivo human brain data show that MR image quality, DMI sensitivity, as well as information content are preserved in the MRI-DMI acquisition method. The interleaved MRI-DMI technology provides full flexibility to upgrade traditional MRI protocols with DMI, adding unique metabolic information to existing types of anatomical image contrast, without extra scan time.

3.
Front Cell Neurosci ; 17: 1130816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187610

RESUMO

Introduction: There is a lack of robust metabolic imaging techniques that can be routinely applied to characterize lesions in patients with brain tumors. Here we explore in an animal model of glioblastoma the feasibility to detect uptake and metabolism of deuterated choline and describe the tumor-to-brain image contrast. Methods: RG2 cells were incubated with choline and the level of intracellular choline and its metabolites measured in cell extracts using high resolution 1H NMR. In rats with orthotopically implanted RG2 tumors deuterium metabolic imaging (DMI) was applied in vivo during, as well as 1 day after, intravenous infusion of 2H9-choline. In parallel experiments, RG2-bearing rats were infused with [1,1',2,2'-2H4]-choline and tissue metabolite extracts analyzed with high resolution 2H NMR to identify molecule-specific 2H-labeling in choline and its metabolites. Results: In vitro experiments indicated high uptake and fast phosphorylation of exogenous choline in RG2 cells. In vivo DMI studies revealed a high signal from the 2H-labeled pool of choline + metabolites (total choline, 2H-tCho) in the tumor lesion but not in normal brain. Quantitative DMI-based metabolic maps of 2H-tCho showed high tumor-to-brain image contrast in maps acquired both during, and 24 h after deuterated choline infusion. High resolution 2H NMR revealed that DMI data acquired during 2H-choline infusion consists of free choline and phosphocholine, while the data acquired 24 h later represent phosphocholine and glycerophosphocholine. Discussion: Uptake and metabolism of exogenous choline was high in RG2 tumors compared to normal brain, resulting in high tumor-to-brain image contrast on DMI-based metabolic maps. By varying the timing of DMI data acquisition relative to the start of the deuterated choline infusion, the metabolic maps can be weighted toward detection of choline uptake or choline metabolism. These proof-of-principle experiments highlight the potential of using deuterated choline combined with DMI to metabolically characterize brain tumors.

4.
Eur J Nucl Med Mol Imaging ; 50(7): 2081-2099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849748

RESUMO

PURPOSE: Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS: We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS: [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION: [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Primatas
5.
J Cereb Blood Flow Metab ; 43(5): 778-790, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606595

RESUMO

Recanalization therapy after acute ischemic stroke enables restoration of cerebral perfusion. However, a significant subset of patients has poor outcome, which may be caused by disruption of cerebral energy metabolism. To assess changes in glucose metabolism subacutely and chronically after recanalization, we applied two complementary imaging techniques, fluorodeoxyglucose (FDG) positron emission tomography (PET) and deuterium (2H) metabolic imaging (DMI), after 60-minute transient middle cerebral artery occlusion (tMCAO) in C57BL/6 mice. Glucose uptake, measured with FDG PET, was reduced at 48 hours after tMCAO and returned to baseline value after 11 days. DMI revealed effective glucose supply as well as elevated lactate production and reduced glutamate/glutamine synthesis in the lesion area at 48 hours post-tMCAO, of which the extent was dependent on stroke severity. A further decrease in oxidative metabolism was evident after 11 days. Immunohistochemistry revealed significant glial activation in and around the lesion, which may play a role in the observed metabolic profiles. Our findings indicate that imaging (altered) active glucose metabolism in and around reperfused stroke lesions can provide substantial information on (secondary) pathophysiological changes in post-ischemic brain tissue.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Deutério/metabolismo , Projetos Piloto , Fluordesoxiglucose F18/metabolismo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Encéfalo/irrigação sanguínea , Tomografia por Emissão de Pósitrons , Infarto da Artéria Cerebral Média/patologia , Glucose/metabolismo
6.
Magn Reson Med ; 89(1): 29-39, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36063499

RESUMO

PURPOSE: To explore the potential of deuterium metabolic imaging (DMI) in the human brain in vivo at 7 T, using a multi-element deuterium (2 H) RF coil for 3D volume coverage. METHODS: 1 H-MR images and localized 2 H MR spectra were acquired in vivo in the human brain of 3 healthy subjects to generate DMI maps of 2 H-labeled water, glucose, and glutamate/glutamine (Glx). In addition, non-localized 2 H-MR spectra were acquired both in vivo and in vitro to determine T1 and T2 relaxation times of deuterated metabolites at 7 T. The performance of the 2 H coil was assessed through numeric simulations and experimentally acquired B1 + maps. RESULTS: 3D DMI maps covering the entire human brain in vivo were obtained from well-resolved deuterated (2 H) metabolite resonances of water, glucose, and Glx. The T1 and T2 relaxation times were consistent with those reported at adjacent field strengths. Experimental B1 + maps were in good agreement with simulations, indicating efficient and homogeneous B1 + transmission and low RF power deposition for 2 H, consistent with a similar array coil design reported at 9.4 T. CONCLUSION: Here, we have demonstrated the successful implementation of 3D DMI in the human brain in vivo at 7 T. The spatial and temporal nominal resolutions achieved at 7 T (i.e., 2.7 mL in 28 min, respectively) were close to those achieved at 9.4 T and greatly outperformed DMI at lower magnetic fields. DMI at 7 T and beyond has clear potential in applications dealing with small brain lesions.


Assuntos
Encéfalo , Imageamento Tridimensional , Humanos , Deutério , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Glucose/metabolismo , Água , Imageamento por Ressonância Magnética/métodos
7.
J Magn Reson ; 341: 107247, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691241

RESUMO

Gradient modulated RF pulses, especially gradient offset independent adiabaticity (GOIA) pulses, are increasingly gaining attention for high field clinical magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) due to the lower peak B1 amplitude and associated power demands achievable relative to its non-modulated adiabatic full passage counterparts. In this work we describe the development of two GOIA RF pulses: 1) A power efficient, 3.0 ms wideband uniform rate with smooth truncation (WURST) modulated RF pulse with 15 kHz bandwidth compatible with a clinically feasible peak B1 amplitude of 0.87 kHz (or 20 µT), and 2) A highly selective asymmetric 6.66 ms RF pulse with 20 kHz bandwidth designed to achieve a single-sided, fractional transition width of only 1.7%. Effects of potential asynchrony between RF and gradient-modulated (GM) waveforms for 3 ms GOIA-WURST RF pulses was evaluated by simulation and experimentally. Results demonstrate that a 20+ µs asynchrony between RF and GM functions substantially degrades inversion performance when using large RF offsets to achieve translation. A projection-based method is presented that allows a quick calibration of RF and GM asynchrony on pre-clinical/clinical MR systems. The asymmetric GOIA pulse was implemented within a multi-pulse OVS sequence to achieve power efficient, highly-selective, and B1 and T1-independent signal suppression for extracranial lipid suppression. The developed GOIA pulses were utilized with linear gradient modulation (X, Y, Z gradient fields), and with second-order-field modulations (Z2, X2Y2 gradient fields) to provide elliptically-shaped regions-of-interest for MRS and MRSI acquisitions. Both described GOIA-RF pulses have substantial clinical value; specifically, the 3.0 ms GOIA-WURST pulse is beneficial to realize short TE sLASER localized proton MRS/MRSI sequences, and the asymmetric GOIA RF pulse has applications in highly selective outer volume signal suppression to allow interrogation of tissue proximal to extracranial lipids with full-intensity.


Assuntos
Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Encéfalo/metabolismo , Frequência Cardíaca , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
8.
Chronic Stress (Thousand Oaks) ; 6: 24705470221092734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434443

RESUMO

Background: Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods: Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results: Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion: The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.

9.
Magn Reson Med ; 88(1): 28-37, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35225375

RESUMO

PURPOSE: To integrate deuterium metabolic imaging (DMI) with clinical MRI through an interleaved MRI and DMI acquisition workflow. Interleaved MRI-DMI was enabled with hardware and pulse sequence modifications, and the performance was demonstrated using fluid-attenuated inversion recovery (FLAIR) MRI as an example. METHODS: Interleaved FLAIR-DMI was developed by interleaving the 2 H excitation and acquisition time windows into the intrinsic delay periods presented in the FLAIR method. All 2 H MR signals were up-converted to the 1 H Larmor frequency using a custom-built hardware unit, which also achieved frequency and phase locking of the output signal in real-time. The interleaved measurements were compared with direct measurements both in phantom and in the human brain in vivo. RESULTS: The interleaved MRI-DMI acquisition strategy allowed simultaneous detection of FLAIR MRI and DMI in the same scan time as a FLAIR-only MRI acquisition. Both phantom and in vivo data showed that the MR image quality, DMI sensitivity as well as information content were preserved using interleaved MRI-DMI. CONCLUSION: The interleaved MRI-DMI technology can be used to extend clinical MRI protocols with DMI, thereby offering a metabolic component to the MR imaging contrasts without a penalty on patient comfort or scan time.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Meios de Contraste , Deutério , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2891-2895, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891851

RESUMO

Common to most medical imaging techniques, the spatial resolution of Magnetic Resonance Spectroscopic Imaging (MRSI) is ultimately limited by the achievable SNR. This work presents a deep learning method for 1H-MRSI spatial resolution enhancement, based on the observation that multi-parametric MRI images provide relevant spatial priors for MRSI enhancement. A Multi-encoder Attention U-Net (MAU-Net) architecture was constructed to process a MRSI metabolic map and three different MRI modalities through separate encoding paths. Spatial attention modules were incorporated to automatically learn spatial weights that highlight salient features for each MRI modality. MAU-Net was trained based on in vivo brain imaging data from patients with high-grade gliomas, using a combined loss function consisting of pixel, structural and adversarial loss. Experimental results showed that the proposed method is able to reconstruct high-quality metabolic maps with a high-resolution of 64×64 from a low-resolution of 16 × 16, with better performance compared to several baseline methods.


Assuntos
Neoplasias Encefálicas , Glioma , Atenção , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
11.
Neuroimage ; 244: 118639, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637905

RESUMO

PURPOSE: To present first highly spatially resolved deuterium metabolic imaging (DMI) measurements of the human brain acquired with a dedicated coil design and a fast chemical shift imaging (CSI) sequence at an ultrahigh field strength of B0 = 9.4 T. 2H metabolic measurements with a temporal resolution of 10 min enabled the investigation of the glucose metabolism in healthy human subjects. METHODS: The study was performed with a double-tuned coil with 10 TxRx channels for 1H and 8TxRx/2Rx channels for 2H and an Ernst angle 3D CSI sequence with a nominal spatial resolution of 2.97 ml and a temporal resolution of 10 min. RESULTS: The metabolism of [6,6'-2H2]-labeled glucose due to the TCA cycle could be made visible in high resolution metabolite images of deuterated water, glucose and Glx over the entire human brain. CONCLUSION: X-nuclei MRSI as DMI can highly benefit from ultrahigh field strength enabling higher temporal and spatial resolutions.


Assuntos
Encéfalo/diagnóstico por imagem , Deutério/metabolismo , Imageamento por Ressonância Magnética/métodos , Glucose/metabolismo , Substância Cinzenta/diagnóstico por imagem , Humanos
12.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439188

RESUMO

Increased glucose and choline uptake are hallmarks of cancer. We investigated whether the uptake and conversion of [2H9]choline alone and together with that of [6,6'-2H2]glucose can be assessed in tumors via deuterium metabolic imaging (DMI) after administering these compounds. Therefore, tumors with human renal carcinoma cells were grown subcutaneously in mice. Isoflurane anesthetized mice were IV infused in the MR magnet for ~20 s with ~0.2 mL solutions containing either [2H9]choline (0.05 g/kg) alone or together with [6,6'-2H2]glucose (1.3 g/kg). 2H MR was performed on a 11.7T MR system with a home-built 2H/1H coil using a 90° excitation pulse and 400 ms repetition time. 3D DMI was recorded at high resolution (2 × 2 × 2 mm) in 37 min or at low resolution (3.7 × 3.7 × 3.7 mm) in 2:24 min. Absolute tissue concentrations were calculated assuming natural deuterated water [HOD] = 13.7 mM. Within 5 min after [2H9]choline infusion, its signal appeared in tumor spectra representing a concentration increase to 0.3-1.2 mM, which then slowly decreased or remained constant over 100 min. In plasma, [2H9]choline disappeared within 15 min post-infusion, implying that its signal arises from tumor tissue and not from blood. After infusing a mixture of [2H9]choline and [6,6'-2H2]glucose, their signals were observed separately in tumor 2H spectra. Over time, the [2H9]choline signal broadened, possibly due to conversion to other choline compounds, [[6,6'-2H2]glucose] declined, [HOD] increased and a lactate signal appeared, reflecting glycolysis. Metabolic maps of 2H compounds, reconstructed from high resolution DMIs, showed their spatial tumor accumulation. As choline infusion and glucose DMI is feasible in patients, their simultaneous detection has clinical potential for tumor characterization.

14.
Cell Rep ; 35(13): 109302, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34192534

RESUMO

Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Neoplasias Cerebelares/líquido cefalorraquidiano , Neoplasias Cerebelares/enzimologia , Meduloblastoma/líquido cefalorraquidiano , Meduloblastoma/enzimologia , Meninges/patologia , Microambiente Tumoral , Acetilação , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Neoplasias Meníngeas/secundário , Camundongos Nus , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Fenótipo , Ratos , Ácido gama-Aminobutírico/metabolismo
15.
J Magn Reson ; 326: 106932, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33902815

RESUMO

Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.


Assuntos
Acetatos , Deutério , Glucose , Espectroscopia de Ressonância Magnética/métodos , Glucose/metabolismo , Água
16.
Magn Reson Med ; 86(1): 62-68, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590529

RESUMO

PURPOSE: Deuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-2 H2 ]-glucose and [6,6'-2 H2 ]-glycogen in the 2 H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13 C MRS. Here the NMR visibility of 2 H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-2 H2 ]-glucose. METHODS: Mice were provided drinking water containing 2 H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase. RESULTS: 2 H-labeled glycogen was barely detectable in solution using 2 H NMR because of the very short T2 (<2 ms) of 2 H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13 C-labeled glycogen (T2 = ~10 ms). CONCLUSION: 2 H-labeled glycogen is not detectable with 2 H MRS(I) under in vivo conditions, leaving 13 C MRS as the preferred technique for in vivo detection of glycogen.


Assuntos
Glicogênio Hepático , Imageamento por Ressonância Magnética , Animais , Deutério , Glucose , Fígado/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Camundongos
17.
Neuroscience ; 474: 94-99, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493618

RESUMO

Altered brain metabolism contributes to pathophysiology in cerebrovascular and neurodegenerative diseases such as stroke and Alzheimer's disease. Current clinical tools to study brain metabolism rely on positron emission tomography (PET) requiring specific hardware and radiotracers, or magnetic resonance spectroscopy (MRS) involving technical complexity. In this review we highlight deuterium metabolic imaging (DMI) as a novel translational technique for assessment of brain metabolism, with examples from brain tumor and stroke studies. DMI is an MRS-based method that enables detection of deuterated substrates, such as glucose, and their metabolic products, such as lactate, glutamate and glutamine. It provides additional detail of downstream metabolites compared to analogous approaches like fluorodeoxyglucose (FDG)-PET, and can be implemented and executed on clinical and preclinical MR systems. We foresee that DMI, with future improvements in spatial and temporal resolutions, holds promise to become a valuable MR imaging (MRI) method for non-invasive mapping of glucose uptake and its downstream metabolites in healthy and diseased brain.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Deutério , Fluordesoxiglucose F18 , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons
18.
ACS Chem Neurosci ; 12(1): 234-243, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33319987

RESUMO

Deuterium metabolic imaging (DMI) is a novel, 3D, magnetic resonance (MR)-based method to map metabolism of deuterated substrates in vivo. The replacement of protons with deuterons could potentially lead to kinetic isotope effects (KIEs) in which metabolic rates of deuterated substrates are reduced due to the presence of a heavier isotope. Knowledge of the extent of KIE in vivo and 2H label loss due to exchange reactions is required for DMI-based measurements of absolute metabolic rates. Here the deuterium KIE and label loss in vivo are investigated for glucose and acetate using a double substrate/double labeling strategy and 1H-decoupled 13C NMR in rat glioma cells and rat brain tissue metabolite extracts. The unique spectral patterns due to extensive 2H-13C and 13C-13C scalar couplings allow the identification of all possible metabolic products. The 2H label loss observed in lactate, glutamate, and glutamine of rat brain was 15.7 ± 2.6, 37.9 ± 1.1, and 41.5 ± 5.2% when using [6,6-2H2]-glucose as the metabolic substrate. For [2-2H3]-acetate, the 2H label loss in glutamate and glutamine was 14.4 ± 3.4 and 13.6 ± 2.2%, respectively, in excellent agreement with predicted values. Steady-state 2H label accumulation in the C4 position of glutamate and glutamine was contrasted by the absence of label accumulation in the C2 or C3 positions, indicating that during a full turn of the tricarboxylic acid cycle all 2H label is lost. The measured KIE was relatively small (4-6%) for both substrates and all measured metabolic products. These results pave the way for further development of quantitative DMI studies to generate metabolic flux maps in vivo.


Assuntos
Ácido Glutâmico , Glutamina , Animais , Isótopos de Carbono , Deutério , Marcação por Isótopo , Cinética , Espectroscopia de Ressonância Magnética , Ratos
19.
NMR Biomed ; 34(1): e4415, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001485

RESUMO

A multitude of extracranial lipid suppression methods exist for proton MRSI acquisitions. Popular and emerging lipid suppression methods each have their inherent set of advantages and disadvantages related to the achievable level of lipid suppression, RF power deposition, insensitivity to B1+ field and lipid T1 heterogeneity, brain coverage, spatial selectivity, chemical shift displacement (CSD) errors and the reliability of spectroscopic data spanning the observed 0.9-4.7 ppm band. The utility of elliptical localization with pulsed second order fields (ECLIPSE) was previously demonstrated with a greater than 100-fold in extracranial lipid suppression and low power requirements utilizing 3 kHz bandwidth AFP pulses. Like all gradient-based localization methods, ECLIPSE is sensitive to CSD errors, resulting in a modified metabolic profile in edge-of-ROI voxels. In this work, ECLIPSE is extended with 15 kHz bandwidth second order gradient-modulated RF pulses based on the gradient offset-independent adiabaticity (GOIA) algorithm to greatly reduce CSD and improve spatial selectivity. An adiabatic double spin-echo ECLIPSE inner volume selection (TE = 45 ms) MRSI method and an ECLIPSE outer volume suppression (TE = 3.2 ms) FID-MRSI method were implemented. Both GOIA-ECLIPSE MRSI sequences provided artifact-free metabolite spectra in vivo, with a greater than 100-fold in lipid suppression and less than 2.6 mm in-plane CSD and less than 3.3 mm transition width for edge-of-ROI voxels, representing an ~5-fold improvement compared with the parent, nongradient-modulated method. Despite the 5-fold larger bandwidth, GOIA-ECLIPSE only required a 1.9-fold increase in RF power. The highly robust lipid suppression combined with low CSD and sharp ROI edge transitions make GOIA-ECLIPSE an attractive alternative to commonly employed lipid suppression methods. Furthermore, the low RF power deposition demonstrates that GOIA-ECLIPSE is very well suited for high field (≥3 T) MRSI applications.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Prótons , Simulação por Computador , Feminino , Humanos , Lipídeos/análise , Masculino , Imagens de Fantasmas , Ondas de Rádio , Água/análise
20.
NMR Biomed ; 33(3): e4235, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879985

RESUMO

Deuterium metabolic imaging (DMI) is a novel MR-based method to spatially map metabolism of deuterated substrates such as [6,6'-2 H2 ]-glucose in vivo. Compared with traditional 13 C-MR-based metabolic studies, the MR sensitivity of DMI is high due to the larger 2 H magnetic moment and favorable T1 and T2 relaxation times. Here, the magnetic field dependence of DMI sensitivity and transmit efficiency is studied on phantoms and rat brain postmortem at 4, 9.4 and 11.7 T. The sensitivity and spectral resolution on human brain in vivo are investigated at 4 and 7 T before and after an oral dose of [6,6'-2 H2 ]-glucose. For small animal surface coils (Ø 30 mm), the experimentally measured sensitivity and transmit efficiency scale with the magnetic field to a power of +1.75 and -0.30, respectively. These are in excellent agreement with theoretical predictions made from the principle of reciprocity for a coil noise-dominant regime. For larger human surface coils (Ø 80 mm), the sensitivity scales as a +1.65 power. The spectral resolution increases linearly due to near-constant linewidths. With optimal multireceiver arrays the acquisition of DMI at a nominal 1 mL spatial resolution is feasible at 7 T.


Assuntos
Deutério/metabolismo , Campos Magnéticos , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Imagens de Fantasmas , Ratos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...