Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2622: 173-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781760

RESUMO

Click chemistry, and particularly azide-alkyne cycloaddition, represents one of the principal bioconjugation strategies that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields were obtained in the presence of bathophenanthrolinedisulphonate, a water-soluble copper-ion chelator, acting as catalyst. No vesicle leakage was triggered by this conjugation reaction, and the coupled mannose ligands were exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this type of conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent this constraint, an example of alternate copper-free azide-alkyne click reaction has been developed, and it was applied to the anchoring of a biotin moiety that was fully functional and could be therefore quantified. Molecular tools and results are presented here.


Assuntos
Química Click , Lipossomos , Lipossomos/química , Química Click/métodos , Azidas/química , Catálise , Alcinos/química , Ligantes , Reação de Cicloadição
2.
ChemMedChem ; 15(1): 136-154, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31743599

RESUMO

Pyridoclax is considered a promising anticancer drug, acting as a protein-protein interaction disruptor, with potential applications in the treatment of ovarian, lung, and mesothelioma cancers. Eighteen sensibly selected structural analogues of Pyridoclax were synthesized, and their physicochemical properties were systematically assessed and analyzed. Moreover, considering that drug-membrane interactions play an essential role in understanding the mode of action of a given drug and its eventual toxic effects, membrane models were used to investigate such interactions in bulk (liposomes) and at the air-water interface. The measured experimental data on all original oligopyridines allowed the assessment of relative differences in terms of physicochemical properties, which could be determinant for their druggability, and hence for drug development.


Assuntos
Lipossomos/química , Piridinas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipossomos/metabolismo , Microscopia de Força Atômica , Octanóis/química , Piridinas/síntese química , Piridinas/metabolismo , Solubilidade , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Água/química
3.
Eur J Med Chem ; 159: 357-380, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30308410

RESUMO

Protein-protein interactions are attractive targets because they control numerous cellular processes. In oncology, apoptosis regulating Bcl-2 family proteins are of particular interest. Apoptotic cell death is controlled via PPIs between the anti-apoptotic proteins hydrophobic groove and the pro-apoptotic proteins BH3 domain. In ovarian carcinoma, it has been previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect tumor cells against apoptosis. Moreover, Mcl-1 is a key regulator of cancer cell survival and is a known resistance factor to Bcl-2/Bcl-xL pharmacological inhibitors making it an attractive therapeutic target. Here, using a structure-guided design from the oligopyridine lead Pyridoclax based on Noxa/Mcl-1 interaction we identified a new derivative, active at lower concentration as compared to Pyridoclax. This new derivative selectively binds to the Mcl-1 hydrophobic groove and releases Bak and Bim from Mcl-1 to induce cell death and sensitize cancer cells to Bcl-2/Bcl-xL targeting strategies.


Assuntos
Desenho de Fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridinas/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
4.
ACS Appl Mater Interfaces ; 10(35): 29347-29356, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30107127

RESUMO

Nowadays, the need for therapeutic biomaterials displaying anti-inflammatory properties to fight against inflammation-related diseases is continuously increasing. Compact polyelectrolyte complexes (CoPECs) represent a new class of materials obtained by ultracentrifugation of a polyanion/polycation complex suspension in the presence of salt. Here, a noncytotoxic ß-cyclodextrin-functionalized chitosan/alginate CoPEC was formulated, characterized, and described as a promising drug carrier displaying an intrinsic anti-inflammatory property. This new material was successfully formed, and due to the presence of cyclodextrins, it was able to trap and release hydrophobic drugs such as piroxicam used as a model drug. The intrinsic anti-inflammatory activity of this CoPEC was analyzed in vitro using murine macrophages in the presence of lipopolysaccharide (LPS) endotoxin. In this model, it was shown that CoPEC inhibited LPS-induced TNF-α and NO release and moderated the differentiation of LPS-activated macrophages. Over time, this kind of bioactive biomaterial could constitute a new family of delivery systems and expand the list of therapeutic tools available to target inflammatory chronic diseases such as arthritis or Crohn's disease.


Assuntos
Ácido Algínico , Materiais Biocompatíveis , Quitosana , Macrófagos , Polieletrólitos , beta-Ciclodextrinas , Ácido Algínico/química , Ácido Algínico/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/química , Quitosana/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Polieletrólitos/química , Polieletrólitos/farmacologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
5.
Oncotarget ; 9(21): 15566-15578, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643993

RESUMO

Tumor Necrosis Factor Receptor Apoptosis Inducing Ligand (TRAIL) appears as an interesting candidate for targeted cancer therapy as it induces apoptosis in cancer cells without toxicity to normal cells. TRAIL elicits apoptosis through agonist death receptor TRAIL-R1 and TRAIL-R2 engagement. Nevertheless, recombinant soluble TRAIL and monoclonal antibodies against these receptors demonstrated insufficient efficacy in clinical trials. This may be explained by the cell-type dependency of the apoptotic response, itself influenced by the effect on ligand binding mode of factors such as the level of receptor oligomerization or glycosylation. To investigate the relation between binding mode and signaling, we used previously described synthetic divalent and monovalent peptides specific for TRAIL-R2. We measured their pro-apoptotic activity on three cancer cell lines sensitive to rhTRAIL induced-apoptosis and monitored their cell-surface binding kinetics. The two divalent peptides bound with strong affinity to TRAIL-R2 expressed on B lymphoma BJAB cells and induced a high degree of apoptosis. By contrast, the same peptides bound weakly to TRAIL-R2 expressed at the surface of the human colon cancer HCT116 or T lymphoma Jurkat cell lines and did not induce their apoptosis. Cross-linking experiments suggest that these differences could be afforded by variations in the TRAIL-R2 oligomerization state at cell surface before ligand addition. Moreover divalent peptides showed a different efficiency in BJAB apoptosis induction, and kinetic distribution analysis of the BJAB binding curves suggested subtle differences in binding mechanisms. Thus our data support a relation between the cell-surface binding mode of the peptides and their pro-apoptotic activity. In this case the precise characterization of ligand binding to the surface of living cells would be predictive of the therapeutic potential of TRAIL-R2 synthetic ligands prior to clinical trials.

6.
J Chem Inf Model ; 57(11): 2885-2895, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29016132

RESUMO

Mcl-1, which is an anti-apoptotic member of the Bcl-2 protein family, is overexpressed in various cancers and promotes the aberrant survival of tumor cells. To inhibit Mcl-1, and initiate apoptosis, an interaction between BH3-only proteins and Mcl-1 anti-apoptotic protein is necessary. These protein-protein interactions exhibit some selectivity: Mcl-1 binds specifically to Noxa, whereas Bim and Puma bind strongly to all anti-apoptotic proteins. Even if the three-dimensional (3D) structures of several Mcl-1/BH3-only complexes have been solved, the BH3-only binding specificity to Mcl-1 is still not completely understood. In this study, molecular dynamics simulations were used to elucidate the molecular basis of the interactions with Mcl-1. Our results corroborate the importance of four conserved hydrophobic residues and a conserved aspartic acid on BH3-only as a common binding pattern. Furthermore, our results highlight the contribution of the fifth hydrophobic residue in the C-terminal part and a negatively charged patch in the N-terminal of BH3-only peptides as important for their fixation to Mcl-1. We hypothesize that this negatively charged patch will be an Mcl-1 specific binding pattern.


Assuntos
Simulação de Dinâmica Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sequência de Aminoácidos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Proteína de Morte Celular Associada a bcl/metabolismo
7.
Int J Pharm ; 530(1-2): 354-363, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743554

RESUMO

The potent antitumor effect of α-galactosylceramide (α-GalCer) is based on its recognition by invariant Natural Killer T cells (iNKT) after its capture and presentation by antigen presenting cells including dendritic cells (DCs). Synthetic α-GalCer has already been tested in advanced cancer patients but no or only moderate clinical responses were obtained. To optimize α-GalCer efficacy, we have postulated that alternative formulations impacting its molecular organization in aqueous medium could modify DC uptake and iNKT-based immune responses. To this end, we have developed two strategies: (1) the formulation of α-GalCer in non-cationic liposomes and (2) the synthesis of a water-soluble α-GalCer analogue by anchoring a polyethyleneglycol moiety on its sugar head. The biological activities of these new preparations were compared to that induced by the classically used Polysorbate 20 α-GalCer micelles. Both formulations retained their uptake by DCs and activated iNKT cells both in vitro and in vivo. Despite a lower cytokine production, the formulations induced a potent immune response able to control lung murine carcinoma. In conclusion, it is possible to increase α-GalCer solubility in aqueous solution without limiting its antitumor properties.


Assuntos
Antineoplásicos/química , Galactosilceramidas/química , Neoplasias Pulmonares/tratamento farmacológico , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Lipossomos/química , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Methods Mol Biol ; 1522: 93-106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27837533

RESUMO

Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.


Assuntos
Química Click/métodos , Lipossomos/química , Cobre/química , Ligantes , Lipídeos/síntese química , Lipídeos/química
9.
J Med Chem ; 58(4): 1644-68, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25585174

RESUMO

Apoptosis control defects such as the deregulation of Bcl-2 family member expression are frequently involved in chemoresistance. In ovarian carcinoma, we previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect cancer cells against apoptosis and their concomitant inhibition leads to massive apoptosis even in the absence of chemotherapy. Whereas Bcl-xL inhibitors are now available, Mcl-1 inhibition, required to sensitize cells to Bcl-xL-targeting strategies, remains problematic. In this context, we designed and synthesized oligopyridines potentially targeting the Mcl-1 hydrophobic pocket, evaluated their capacity to inhibit Mcl-1 in live cells, and implemented a functional screening assay to evaluate their ability to sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. We established structure-activity relationships and focused our attention on MR29072, named Pyridoclax. Surface plasmon resonance assay demonstrated that pyridoclax directly binds to Mcl-1. Without cytotoxic activity when administered as a single agent, pyridoclax induced apoptosis in combination with Bcl-xL-targeting siRNA or with ABT-737 in ovarian, lung, and mesothelioma cancer cells.


Assuntos
Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Piridinas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias Ovarianas/patologia , Piridinas/síntese química , Piridinas/química , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Células Tumorais Cultivadas , Proteína bcl-X/metabolismo
10.
J Pharm Biomed Anal ; 53(2): 179-85, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20359840

RESUMO

A series of synthesised tocainide analogues were characterized for their human serum albumin (HSA) binding, using high-performance liquid affinity chromatography (HPLAC) and circular dichroism (CD). The synthesis and physico-chemical characterization of compounds 7a-7d is reported here. For the HPLAC investigation HSA was covalently immobilized to the silica matrix of the HPLC column, using an anchoring procedure, which allows the binding properties of the protein to be maintained. The HSA-based column was used for getting information on the high affinity binding sites of the tocainide analogues to HSA. According to the displacement chromatography approach, the retentions of the analytes were determined in the absence and in the presence of increasing concentrations of competitors known to bind to specific binding sites on the protein. The same system, drug/protein, was investigated in solution by CD. The analysed compounds, proved active as sodium channel blockers, showed a much higher affinity to the serum carrier with respect to the parent compound, tocainide. Further, a non-cooperative interaction at sites I and II, and an almost independent binding at the bilirubin binding site on HSA were hypothesised on the bases of the competition experiments.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular/métodos , Albumina Sérica/metabolismo , Tocainide/análogos & derivados , Tocainide/farmacocinética , Sítios de Ligação , Humanos , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...