Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Toxicol ; 6: 100174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841651

RESUMO

Gold complexes can be a useful system in the fight against cancer. Although many studies have been carried out on in vitro 2D cell culture models embryotoxic assays are particularly lacking. Embryotoxicity and DNA damage are critical concerns in drug development. In this study, the effects of a new N-Heterocyclic carbene (NHC)-Au compound (Bromo[1,3-di-4-methoxybenzyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I)) at different concentrations were explored using multifaceted approach, encompassing 2D cancer cell cultures, in vivo zebrafish and in vitro bovine models, and compared with a consolidated similar complex (Bromo[1,3-diethyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene]gold(I)). The results obtained from 2D cancer cell cultures revealed concentration-dependent effects of the gold compounds by estimating the cytotoxicity with MTT assay and cellular damage as indicated by LDH release. Selected concentrations of gold complexes demonstrated no adverse effects on zebrafish embryo development. However, in bovine embryos, these same concentrations led to significant impairments in the early developmental stages, triggering cell apoptosis and reducing blastocyst competence. These findings underscore the importance of evaluating drug effects across different model systems to comprehensively assess their safety and potential impact on embryonic development.

2.
Cells ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920627

RESUMO

Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.


Assuntos
Técnicas de Cultura Embrionária , Embrião de Mamíferos , Animais , Humanos , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Gravidez , Feminino , Blastocisto/citologia , Blastocisto/metabolismo
3.
Heliyon ; 10(10): e31087, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826730

RESUMO

As the demand for rare earth elements (REEs) continues to surge in diverse industrial and medical domains, the ecological consequences of their ubiquitous presence have garnered heightened attention. Among the REEs, gadolinium (Gd), commonly used in medical imaging contrast agents, has emerged as a pivotal concern due to its inadvertent introduction into marine ecosystems via wastewater release. This study delves into the complex ecotoxicological implications of Gd contamination, focusing on its impact on the embryonic development and sperm functionality of Mytilus galloprovincialis. The findings from this study underscore the potential hazards posed by this rare element, offering a critical perspective on the ecological risks associated with Gd. Notably, this exploratory work reveals that Gd exerts a significant embryotoxic effect at elevated concentrations, with an observed half maximal effective concentration (EC50) value of 0.026 mg/L. Additionally, Gd exposure leads to a considerable reduction in sperm motility and alters sperm morfo-kinetic parameters, especially at a concentration of 5.6 mg/L. The results highlight a dose-dependent relationship between Gd exposure and the prevalence of specific malformation types in Mytilus embryos, further providing crucial insights into the potential risks imposed by this rare earth element.

4.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786090

RESUMO

The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.


Assuntos
Blastocisto , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Zigoto , Animais , Bovinos , Blastocisto/citologia , Blastocisto/metabolismo , Zigoto/citologia , Zigoto/metabolismo , Técnicas de Cultura Embrionária/métodos , Feminino , Mitocôndrias/metabolismo
5.
Sci Rep ; 14(1): 11613, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773229

RESUMO

Natural polymers have found increased use in a wider range of applications due to their less harmful effects. Notably, bacterial cellulose has gained significant consideration due to its exceptional physical and chemical properties and its substantial biocompatibility, which makes it an attractive candidate for several biomedical applications. This study attempts to thoroughly unravel the microstructure of bacterial cellulose precursors, known as bioflocculants, which to date have been poorly characterised, by employing both electron and optical microscopy techniques. Here, starting from bioflocculants from Symbiotic Culture of Bacteria and Yeast (SCOBY), we proved that their microstructural features, such as porosity percentage, cellulose assembly degree, fibres' density and fraction, change in a spatio-temporal manner during their rising toward the liquid-air interface. Furthermore, our research identified a correlation between electron and optical microscopy parameters, enabling the assessment of bioflocculants' microstructure without necessitating offline sample preparation procedures. The ultimate goal was to determine their potential suitability as a novel cellulose-based building block material with tuneable structural properties. Our investigations substantiate the capability of SCOBY bioflocculants, characterized by distinct microstructures, to successfully assemble within a microfluidic device, thereby generating a cellulose sheet endowed with specific and purposefully designed structural features.


Assuntos
Celulose , Celulose/química , Bactérias/metabolismo , Porosidade
6.
Front Bioeng Biotechnol ; 12: 1310696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390358

RESUMO

Introduction: We report the development and preliminary evaluation of a novel dynamic bioreactor to culture ovarian cortical tissue strips that leverages tissue response to enhanced oxygen transport and adequate mechanical stimulation. In vitro multistep ovarian tissue static culture followed by mature oocyte generation, fertilization, and embryo transfer promises to use the reserve of dormant follicles. Unfortunately, static in vitro culture of ovarian tissue does not promote development of primordial to secondary follicles or sustain follicle viability and thereby limits the number of obtainable mature oocytes. Enhancing oxygen transport to and exerting mechanical stimulation on ovarian tissue in a dynamic bioreactor may more closely mimic the physiological microenvironment and thus promote follicle activation, development, and viability. Materials and Methods: The most transport-effective dynamic bioreactor design was modified using 3D models of medium and oxygen transport to maximize strip perifusion and apply tissue fluid dynamic shear stresses and direct compressive strains to elicit tissue response. Prototypes of the final bioreactor design were manufactured with materials of varying cytocompatibility and assessed by testing the effect of leachables on sperm motility. Effectiveness of the bioreactor culture was characterized against static controls by culturing fresh bovine ovarian tissue strips for 7 days at 4.8 × 10-5 m/s medium filtration flux in air at -15% maximal total compressive strain and by assessing follicle development, health, and viability. Results and Conclusions: Culture in dynamic bioreactors promoted effective oxygen transport to tissues and stimulated tissues with strains and fluid dynamic shear stresses that, although non-uniform, significantly influenced tissue metabolism. Tissue strip culture in bioreactors made of cytocompatible polypropylene preserved follicle viability and promoted follicle development better than static culture, less so in bioreactors made of cytotoxic ABS-like resin.

7.
Reprod Biol ; 23(3): 100794, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531931

RESUMO

Ovarian tissue cryopreservation prior to gonadotoxic treatment is the only recommended option for fertility preservation in prepubertal girls. Due to the technical complexity of this technique, limited number of centres across the world are equipped to offer the facility. Hence, the retrieved ovarian tissue needs to be maintained at hypothermic temperature (4 °C) for long time during shipment. The time taken between tissue retrieval and cryopreservation could influence the functionality of cells during fertility restoration. This study explored the tissue integrity and follicle quality of ovarian cortical slices subjected to pre-freeze holding for various time durations in vitro. Prepubertal bovine ovarian tissue from < 12 months old animals were handled at hypothermic holding (4 °C) for 0, 24, 48 and 72 h. The tissues were assessed for follicle viability through confocal analysis of live-dead labelled samples, and follicle quality and tissue integrity through histology. Results have shown that follicle viability, and overall follicle quality were not significantly affected at the end of 72 h hypothermic holding. Though, the observation reassures extended hypothermic holding prior to freezing, findings need to be validated in human tissue prior to use in clinical fertility preservation programs.


Assuntos
Preservação da Fertilidade , Folículo Ovariano , Feminino , Animais , Bovinos , Humanos , Lactente , Congelamento , Ovário/patologia , Criopreservação/veterinária , Criopreservação/métodos , Preservação da Fertilidade/métodos
8.
Sci Rep ; 13(1): 11773, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479791

RESUMO

In vitro ovarian cortical tissue culture, followed by culture of isolated secondary follicles, is a promising future option for production of mature oocytes. Although efforts have been made to improve the culture outcome by changing the medium composition, so far, most studies used static culture systems. Here we describe the outcome of 7 days cultures of bovine and human ovarian cortical tissue in a dynamic system using a novel perifusion bioreactor in comparison to static culture in conventional and/or gas permeable dishes. Findings show that dynamic culture significantly improves follicle quality and viability, percentage and health of secondary follicles, overall tissue health, and steroid secretion in both species. Model predictions suggest that such amelioration can be mediated by an enhanced oxygen availability and/or by fluid-mechanical shear stresses and solid compressive strains exerted on the tissue.


Assuntos
Folículo Ovariano , Ovário , Feminino , Humanos , Animais , Bovinos , Oogênese , Oócitos , Técnicas de Cultura de Tecidos
9.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108525

RESUMO

Glyphosate (Gly) is a broad-spectrum herbicide widely used thanks to its high efficiency and low toxicity. However, evidence exists of its toxic effects on non-target organisms. Among these, the animals inhabiting agricultural fields are particularly threatened. Recent studies demonstrated that exposure to Gly markedly affected the morphophysiology of the liver and testis of the Italian field lizard Podarcis siculus. The present study aimed to investigate the effects of the herbicide on the female reproductive system of this lizard in order to have a full picture of Gly-induced reproductive impairment. The animals were exposed to 0.05 and 0.5 µg/kg of pure Gly by gavage for 3 weeks. The results demonstrated that Gly, at both doses tested, profoundly interfered with ovarian function. It induced germ cells' recruitment and altered follicular anatomy by anticipating apoptotic regression of the pyriform cells. It also induced thecal fibrosis and affected oocyte cytoplasm and zona pellucida organizations. At the functional levels, Gly stimulated the synthesis of estrogen receptors, suggesting a serious endocrine-disrupting effect. Overall, the follicular alterations, combined with those found at the level of the seminiferous tubules in males, suggest serious damage to the reproductive fitness of these non-target organisms, which over time could lead to a decline in survival.


Assuntos
Herbicidas , Lagartos , Animais , Masculino , Feminino , Oócitos , Testículo , Herbicidas/toxicidade , Lagartos/fisiologia , Glifosato
10.
Biomacromolecules ; 24(5): 2203-2212, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023462

RESUMO

In this work, we compare the role of two different uptake mechanisms in the effectiveness of a nanoformulated drug, specifically insulin. Insulin is activated by interacting with insulin receptors exposed on the liver cell membrane that triggers the uptake and storage of glucose. To prove that the uptake mechanism of a delivery system can interfere directly with the effectiveness of the delivered drug, two extremely different delivery systems are tested. In detail, hydrogel-based NPs (cHANPs) and natural lipid vesicles (EVs) encapsulating insulin are used to trigger the activation of this hormone in 3D liver microtissues (µTs) based on their different uptake mechanisms. Results demonstrated that the fusion mechanism of Ins-EVs mediates faster and more pronounced insulin activation with respect to the endocytic mechanism of Ins-cHANPs. Indeed, the fusion causes an increased reduction in glucose concentration in the culture medium EV-treated l-µTs with respect to free insulin-treated tissues. The same effect is not observed for Ins-cHANPs that, taken up by endocytosis, can only equal the reduction in glucose concentration produced by free insulin in 48 h. Overall, these results demonstrate that the effectiveness of nanoformulated drugs depends on the identity they acquire in the biological context (biological identity). Indeed, the nanoparticle (NP) biological identity, such as the uptake mechanism, triggers a unique set of nano-bio-interactions that is ultimately responsible for their fate both in the extracellular and intracellular compartments.


Assuntos
Vesículas Extracelulares , Nanopartículas , Insulina , Polímeros/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Fígado , Glucose/metabolismo
11.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982752

RESUMO

Current 3D cancer models (in vitro) fail to reproduce complex cancer cell extracellular matrices (ECMs) and the interrelationships occurring (in vivo) in the tumor microenvironment (TME). Herein, we propose 3D in vitro colorectal cancer microtissues (3D CRC µTs), which reproduce the TME more faithfully in vitro. Normal human fibroblasts were seeded onto porous biodegradable gelatin microbeads (GPMs) and were continuously induced to synthesize and assemble their own ECMs (3D Stroma µTs) in a spinner flask bioreactor. Then, human colon cancer cells were dynamically seeded onto the 3D Stroma µTs to achieve the 3D CRC µTs. Morphological characterization of the 3D CRC µTs was performed to assess the presence of different complex macromolecular components that feature in vivo in the ECM. The results showed the 3D CRC µTs recapitulated the TME in terms of ECM remodeling, cell growth, and the activation of normal fibroblasts toward an activated phenotype. Then, the microtissues were assessed as a drug screening platform by evaluating the effect of 5-Fluorouracil (5-FU), curcumin-loaded nanoemulsions (CT-NE-Curc), and the combination of the two. When taken together, the results showed that our microtissues are promising in that they can help clarify complex cancer-ECM interactions and evaluate the efficacy of therapies. Moreover, they may be combined with tissue-on-chip technologies aimed at addressing further studies in cancer progression and drug discovery.


Assuntos
Neoplasias do Colo , Matriz Extracelular , Humanos , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Microambiente Tumoral
12.
R Soc Open Sci ; 9(9): 220270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177192

RESUMO

Pro-inflammatory (M1) and anti-inflammatory (M2) macrophage phenotypes play a fundamental role in the immune response. The interplay and consequently the classification between these two functional subtypes is significant for many therapeutic applications. Albeit, a fast classification of macrophage phenotypes is challenging. For instance, image-based classification systems need cell staining and coloration, which is usually time- and cost-consuming, such as multiple cell surface markers, transcription factors and cytokine profiles are needed. A simple alternative would be to identify such cell types by using single-cell, label-free and high throughput light scattering pattern analyses combined with a straightforward machine learning-based classification. Here, we compared different machine learning algorithms to classify distinct macrophage phenotypes based on their optical signature obtained from an ad hoc developed wide-angle static light scattering apparatus. As the main result, we were able to identify unpolarized macrophages from M1- and M2-polarized phenotypes and distinguished them from naive monocytes with an average accuracy above 85%. Therefore, we suggest that optical single-cell signatures within a lab-on-a-chip approach along with machine learning could be used as a fast, affordable, non-invasive macrophage phenotyping tool to supersede resource-intensive cell labelling.

13.
Biomaterials ; 286: 121573, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617781

RESUMO

Here, we propose an immune-responsive human Microbiota-Intestine axis on-chip as a platform able to reproduce the architecture and vertical topography of the microbiota with a complex extracellular microenvironment consisting of a responsive extra cellular matrix (ECM) and a plethora of immune-modulatory mediators released from different cell populations such as epithelial, stromal, blood and microbial species in homeostatic and inflamed conditions. Firstly, we developed a three-dimensional human intestine model (3D-hI), represented by an instructive and histologically competent ECM and a well-differentiated epithelium with mucus-covered microvilli. Then, we replicated the microenvironmental anaerobic condition of human intestinal lumen by fabricating a custom-made microbiota chamber (MC) on the apical side of the Microbiota-human Intestine on chip (MihI-oC), establishing the physiological oxygen gradient occurring along the thickness of human small intestine from the serosal to the luminal side. The complexity of the intestinal extracellular microenvironment was improved by integrating cells populations that are directly involved in the inflammatory response such as peripheral blood mononuclear cells (PBMCs) and two species of the intestinal commensal microbiota (Lactobacillus rhamnosus and Bifidobacterium longum). We found that lipopolysaccharide (LPS)-induced inflammation elicits microbiota's geographical change and induce Bifidobacterium longum iper-proliferation, highlighting a role of such probiotic in anti-inflammatory process. Moreover, we proved, for the first time, the indirect role of the microbiota on stromal reshaping in immune-responsive MihI-oC in terms of collagen fibers orientation and ECM remodeling, and demonstrated the role of microbiota in alleviating gastrointestinal, immunological and infectious diseases by analyzing the release of key immune-mediators after inflammatory stimulus (reactive oxygen species (ROS), pro- and anti-inflammatory cytokines).


Assuntos
Microbioma Gastrointestinal , Probióticos , Anti-Inflamatórios , Humanos , Inflamação , Mucosa Intestinal , Leucócitos Mononucleares
14.
Front Bioeng Biotechnol ; 10: 851893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356776

RESUMO

Bacterial cellulose (BC) is a highly pure form of cellulose produced by bacteria, which possesses numerous advantages such as good mechanical properties, high chemical flexibility, and the ability to assemble in nanostructures. Thanks to these features, it achieved a key role in the biomedical field and in drug delivery applications. BC showed its ability to modulate the release of several drugs and biomolecules to the skin, thus improving their clinical outcomes. This work displays the loading of a 3D BC nanonetwork with an innovative drug delivery nanoemulsion system. BC was optimized by static culture of SCOBY (symbiotic colony of bacteria and yeast) and characterized by morphological and ultrastructural analyses, which indicate a cellulose fiber diameter range of 30-50 nm. BC layers were then incubated at different time points with a nanocarrier based on a secondary nanoemulsion (SNE) previously loaded with a well-known antioxidant and anti-inflammatory agent, namely, coenzyme-Q10 (Co-Q10). Incubation of Co-Q10-SNE in the BC nanonetwork and its release were analyzed by fluorescence spectroscopy.

15.
Acta Biomater ; 116: 209-222, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911106

RESUMO

Here, we proposed an innovative organotypic cervical tumor model able to investigate the bi-directional crosstalk between epithelium and stroma as well as the key disease features of the epithelial-mesenchymal transition (EMT) process in vitro. By using a modular tissue assembling approach, we developed 3D cervical stromal models composed of primary human cervical fibroblasts (HCFs) or cervical cancer-associated fibroblasts (CCAFs) embedded in their own ECM to produce 3D normal cervical-instructed stroma (NCIS) or 3D cervical cancer-instructed stroma (CCIS), respectively. Then, we demonstrate the role of the tumor microenvironment (TME) in potentiating the intrinsic invasive attitude of cervical cancer derived SiHa cells and increasing their early viral gene expression by comparing the SiHa behavior when cultured on NCIS or CCIS (SiHa-NCIS or SiHa-CCIS). We proved the crucial role of the CCAFs and stromal microenvironment in the mesenchymalization of the cancer epithelial cells by analyzing several EMT markers. We further assessed the expression of the epithelial adhesion molecules, matricellular enzymes, non-collagenous proteins as well as ECM remodeling in terms of collagen fibers texture and assembly. This cervical tumor model, closely recapitulating key cervical carcinogenesis features, may provide efficient and relevant support to current approaches characterizing cancer progression and develop new anticancer therapy targeting stroma rather than cancer cells.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo do Útero , Transição Epitelial-Mesenquimal , Feminino , Humanos , Microambiente Tumoral
16.
Cancers (Basel) ; 12(5)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375253

RESUMO

Despite the well-known role of chronic human papillomavirus (HPV) infections in causing tumors (i.e., all cervical cancers and other human malignancies from the mucosal squamous epithelia, including anogenital and oropharyngeal cavity), its persistence is not sufficient for cancer development. Other co-factors contribute to the carcinogenesis process. Recently, the critical role of the underlying stroma during the HPV life cycle and HPV-induced disease have been investigated. The tumor stroma is a key component of the tumor microenvironment (TME), which is a specialized entity. The TME is dynamic, interactive, and constantly changing-able to trigger, support, and drive tumor initiation, progression, and metastasis. In previous years, in vitro organotypic raft cultures and in vivo genetically engineered mouse models have provided researchers with important information on the interactions between HPVs and the epithelium. Further development for an in-depth understanding of the interaction between HPV-infected tissue and the surrounding microenvironment is strongly required. In this review, we critically describe the HPV-related cancers modeled in vitro from the simplified 'raft culture' to complex three-dimensional (3D) organotypic models, focusing on HPV-associated cervical cancer disease platforms. In addition, we review the latest knowledge in the field of in vitro culture systems of HPV-associated malignancies of other mucosal squamous epithelia (anogenital and oropharynx), as well as rare cutaneous non-melanoma associated cancer.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32258006

RESUMO

Intestine-Liver-on-chip systems can be useful to predict oral drug administration and first-pass metabolism in vitro in order to partly replace the animal model. While organ-on-chip technology can count on sophisticated micro-physiological devices, the engineered organs still remain artificial surrogates of the native counterparts. Here, we used a bottom-up tissue engineering strategy to build-up physiologically functional 3D Human Intestine Model (3D-HIM) as well as 3D Liver-microtissues (HepG2-µTPs) in vitro and designed a microfluidic Intestine-Liver-On-Chip (InLiver-OC) to emulate first-pass mechanism occurring in vivo. Our results highlight the ethanol-induced 3D-HIM hyper-permeability and stromal injury, the intestinal prevention on the liver injury, as well as the synergic contribution of the two 3D tissue models on the release of metabolic enzymes after high amount of ethanol administration.

18.
Biotechnol Bioeng ; 117(2): 556-566, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598957

RESUMO

An intestine-on-chip has been developed to study intestinal physiology and pathophysiology as well as intestinal transport absorption and toxicity studies in a controlled and human similar environment. Here, we report that dynamic culture of an intestine-on-chip enhances extracellular matrix (ECM) remodeling of the stroma, basement membrane production and speeds up epithelial differentiation. We developed a three-dimensional human intestinal stromal equivalent composed of human intestinal subepithelial myofibroblasts embedded in their own ECM. Then, we cultured human colon carcinoma-derived cells in both static and dynamic conditions in the opportunely designed microfluidic system until the formation of a well-oriented epithelium. This low cost and handy microfluidic device allows to qualitatively and quantitatively detect epithelial polarization and mucus production as well as monitor barrier function and ECM remodeling after nutraceutical treatment.


Assuntos
Matriz Extracelular/fisiologia , Intestinos , Análise Serial de Tecidos , Engenharia Tecidual , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Desenho de Equipamento , Humanos , Intestinos/citologia , Intestinos/fisiologia , Modelos Biológicos , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
19.
Int J Dent ; 2019: 9374607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956660

RESUMO

BACKGROUND: Several locally administered antimicrobials have been studied in the literature as adjunctive or primary treatments for periodontitis and peri-implantitis with conflicting results. OBJECTIVE: The aim of this study was twofold: (1) the formulation of a controlled-release material containing metronidazole and doxycycline; (2) an in vitro evaluation of its antibacterial properties against planktonic and biofilm species involved in periodontal and peri-implant diseases. METHODS: Doxycycline (10 mg/ml) and metronidazole (20 mg/ml) were incorporated into a hydroxyethylcellulose-polyvinylpyrrolidone-calcium polycarbophil gel. Three milliliters of gel were dialyzed against Dulbecco's phosphate-buffered saline for 13 days. Antibiotics release at 3, 7, 10, and 13 days was determined spectroscopically. The inhibitory activity of the experimental gel was tested against A. actinomycetemcomitans, S. sanguinis, P. micra, and E. corrodens with an agar diffusion test, an inactivation biofilm test, and a confocal laser scanning microscope study (CLSMS) for S. sanguinis up to 20 days. RESULTS: After 13 days, the released doxycycline was 9.7% (at 3 days = 1.2 mg; 7 days = 0.67 mg; 10 days = 0.76 mg; 13 days = 0.29 mg), while metronidazole was 67% (30 mg, 6.8 mg, 2.5 mg, and 0.9 mg at the same intervals). The agar diffusion test highlights that the formulated gel was active against tested microorganisms up to 312 h. Quantitative analysis of biofilm formation for all strains and CLSMS for S. sanguinis showed a high growth reduction up to 13 days. CONCLUSIONS: The in vitro efficacy of the newly formulated gel was confirmed both on planktonic species and on bacterial biofilm over a period of 13 days. The controlled-release gel containing metronidazole and doxycycline had an optimal final viscosity and mucoadhesive properties. It can be argued that its employment could be useful for the treatment of periodontal and peri-implant diseases, where conventional therapy seems not successful.

20.
Biotechnol Bioeng ; 116(5): 1152-1163, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552666

RESUMO

In this study, we propose the design and fabrication of a liver system on a chip. We first chose the most suitable three-dimensional liver-like model between cell spheroids and microtissue precursors, both based on the use of hepatocellular carcinoma cells (HepG2) to provide proof-of-concept data. Spheroids displayed high cell density but low expression of the typical hepatic biomarkers, whereas microtissue precursors showed stable viability and function over the entire culture time. The two liver-like models were compared in terms of cell viability, function, metabolism, and the P-glycoprotein 1 (P-gp) transport-protein expression with the microtissue precursors showing the best performance. Thus, we cultured them into a microfluidic biochip featured with three parallel channels shaped to mimic the hepatic sinusoids. To assess the detoxification potential of the microtissue-loaded biochip we challenged it with a model molecule (ethanol) at different concentrations and time points. Ethanol cytotoxicity was detected by a noninvasive measurement of cell viability based on cell autofluorescence. As expected, a dose-dependent decrease of albumin and urea secretion was observed in the ethanol-treated samples. We believe that the described totally human-derived platform, suitable for integration into a multiorgan microfluidic system, can provide a consistent innovative platform for drug development and toxicity studies.


Assuntos
Hepatócitos/metabolismo , Dispositivos Lab-On-A-Chip , Fígado/metabolismo , Esferoides Celulares/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Taxa de Depuração Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...