Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(35): 24755-24766, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37601591

RESUMO

The search for packaging alternatives that reduce the presence of non-biodegradable plastics in water is a focus of much research today. This fact, together with the increasing demand for active packaging capable of prolonging the shelf life of foodstuffs and the rise in the use of natural biopolymers such as cellulose, motivate the present work. This work evaluates CMC films loaded with gallic acid reinforced with (ligno)cellulose nanofibres from various agricultural residues as candidates for use in active food packaging. The first stage of the study involved the evaluation of different nanofibres as the reinforcing agent in CMC films. Increasing proportions of nanofibres (1, 3, 5 and 10% w/w) from horticultural residues (H) and nanofibres from vine shoots (V), containing residual lignin (LCNF) and without it (CNF), and obtained by mechanical (M) or chemical (T) pretreatment, were studied. The results of this first stage showed that the optimum reinforcement effect was obtained with 3% H-MCNF or 3% V-MCNF, where up to 391% and 286% improvement in tensile strength was achieved, respectively. These films offered slightly improved UV-light blocking ability (40-55% UV-barrier) and water vapor permeability (20-30% improvement) over CMC. Next, bioactive films were prepared by incorporating 5 and 10% wt of gallic acid (GA) over the optimised formulations. It was found that the joint addition of cellulose nanofibres and GA enhanced all functional properties of the films. Mechanical properties improved to 70%, WVP to 50% and UV light blocking ability to 70% due to the synergistic effect of nanofibres and GA. Finally, the bioactive films exhibited potent antioxidant activity, 60-70% in the DPPH assay and >99% in the ABTS assay and high antimicrobial capacity against S. aureus.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558303

RESUMO

The hornification processes undergone by the fibers in the paper industry recycling processes lead to the loss of properties of the final products, which exhibit poor mechanical properties. Among the most promising solutions is the reinforcement of secondary fibers with cellulose nanofibers. The present work addresses two important issues: the efficient production of cellulose nanofibers from scarcely exploited agricultural wastes such as horticultural residues and vine shoots, and their application as a reinforcement agent in recycled linerboard recycling processes. The effect of the chemical composition and the pretreatment used on the nanofibrillation efficiency of the fibers was analyzed. Chemical pretreatment allowed a significantly higher nanofibrillated fraction (45−63%) than that produced by mechanical (18−38%), as well as higher specific surface areas (>430 m2/g). The application of the nanofibers as a reinforcing agent in the recycled linerboard considerably improved the mechanical properties (improvements of 15% for breaking length, 220−240% for Young's modulus and 27% for tear index), counteracting the loss of mechanical properties suffered during recycling when using chemically pretreated cellulose nanofibers from horticultural residues and vine shoots. It was concluded that this technology surpasses the mechanical reinforcement produced by conventional mechanical refining used in the industry and extends the number of recycling cycles of the products due to the non-physical modification of the fibers.

3.
Int J Biol Macromol ; 209(Pt A): 1211-1221, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469950

RESUMO

Magnetic beads were developed from polyvinyl alcohol and different amounts of cellulose nanofibers (CNF) by in-situ preparation of iron oxide nanoparticles in an alkaline aqueous medium at room temperature. The CNF were isolated from wheat straw, whereas the magnetic nanoparticles (MNPs) precursors were simple iron salts. The complete characterization of all the obtained materials was conducted, and among some other outstanding results it showed that all the components were strongly interacting via hydrogen bonding, while the nano-rods and husks like MNPs were effectively acting as crosslinking dots. All the prepared materials had good magnetic responses, and they were able to remove not only cationic, but also anionic dye pollutants from aqueous model solutions.


Assuntos
Poluentes Ambientais , Nanofibras , Nanotubos , Celulose , Fenômenos Magnéticos , Álcool de Polivinil , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...