Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Patterns (N Y) ; 3(12): 100634, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36569543

RESUMO

The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging.

2.
ACS Nano ; 14(10): 12810-12818, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32941002

RESUMO

Metalattices are crystalline arrays of uniform particles in which the period of the crystal is close to some characteristic physical length scale of the material. Here, we explore the synthesis and properties of a germanium metalattice in which the ∼70 nm periodicity of a silica colloidal crystal template is close to the ∼24 nm Bohr exciton radius of the nanocrystalline Ge replica. The problem of Ge surface oxidation can be significant when exploring quantum confinement effects or designing electronically coupled nanostructures because of the high surface area to volume ratio at the nanoscale. To eliminate surface oxidation, we developed a core-shell synthesis in which the Ge metalattice is protected by an oxide-free Si interfacial layer, and we explore its properties by transmission electron microscopy (TEM), Raman spectroscopy, and electron energy loss spectroscopy (EELS). The interstices of a colloidal crystal film grown from 69 nm diameter spherical silica particles were filled with polycrystalline Ge by high-pressure confined chemical vapor deposition (HPcCVD) from GeH4. After the SiO2 template was etched away with aqueous HF, the Ge replica was uniformly coated with an amorphous Si shell by HPcCVD as confirmed by TEM-EDS (energy-dispersive X-ray spectroscopy) and Raman spectroscopy. Formation of the shell prevents oxidation of the Ge core within the detection limit of XPS. The electronic properties of the core-shell structure were studied by accessing the Ge 3d edge onset using STEM-EELS. A blue shift in the edge onset with decreasing size of Ge sites in the metalattices suggests quantum confinement of the Ge core. The degree of quantum confinement of the Ge core depends on the void sizes in the template, which is tunable by using silica particles of varying size. The edge onset also shows a shift to higher energy near the shell in comparison with the Ge core. This shift along with the observation of Ge-Si vibrational modes in the Raman spectrum indicate interdiffusion of Ge and Si. Both the size of the voids in the template and core-shell interdiffusion of Si and Ge can in principle be tuned to modify the electronic properties of the Ge metalattice.

3.
J Am Chem Soc ; 142(36): 15513-15526, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786743

RESUMO

Transformations between different atomic configurations of a material oftentimes bring about dramatic changes in functional properties as a result of the simultaneous alteration of both atomistic and electronic structure. Transformation barriers between polytypes can be tuned through compositional modification, generally in an immutable manner. Continuous, stimulus-driven modulation of phase stabilities remains a significant challenge. Utilizing the metal-insulator transition of VO2, we exemplify that mobile dopants weakly coupled to the crystal lattice provide a means of imbuing a reversible and dynamical modulation of the phase transformation. Remarkably, we observe a time- and temperature-dependent evolution of the relative phase stabilities of the M1 and R phases of VO2 in an "hourglass" fashion through the relaxation of interstitial boron species, corresponding to a 50 °C modulation of the transition temperature achieved within the same compound. The material functions as both a chronometer and a thermometer and is "reset" by the phase transition. Materials possessing memory of thermal history hold promise for applications such as neuromorphic computing, atomic clocks, thermometry, and sensing.

4.
ACS Appl Mater Interfaces ; 10(36): 30901-30911, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30106560

RESUMO

Increasing intercalation of Li-ions brings about distortive structural transformations in several canonical intercalation hosts. Such phase transformations require the energy dissipative creation and motion of dislocations at the interface between the parent lattice and the nucleated Li-rich phase. Phase inhomogeneities within particles and across electrodes give rise to pronounced stress gradients, which can result in capacity fading. How such transformations alter Li-ion diffusivities remains much less explored. In this article, we use layered V2O5 as an intercalation host and examine the structural origins of the evolution of Li-ion diffusivities with phase progression upon electrochemical lithiation. Galvanostatic intermittent titration measurements show a greater than 4 orders of magnitude alteration of Li-ion diffusivity in V2O5 as a function of the extent of lithiation. Pronounced dips in Li-ion diffusivities are correlated with the presence of phase mixtures as determined by Raman spectroscopy and X-ray diffraction, whereas monophasic regimes correspond to the highest Li-ion diffusivity values measured within this range. First-principles density functional theory calculations confirm that the variations in Li-ion diffusivity do not stem from intrinsic differences in diffusion pathways across the different lithiated V2O5 phases, which despite differences in the local coordination environments of Li-ions show comparable migration barriers. Scanning transmission X-ray microscopy measurements indicate the stabilization of distinct domains reflecting the phase coexistence of multiple lithiated phases within individual actively intercalating particles. The results thus provide fundamental insight into the considerable ion transport penalties incurred as a result of phase boundaries formed within actively intercalating particles. The combination of electrochemical studies with ensemble structural characterization and single-particle X-ray imaging of phase boundaries demonstrates the profound impact of interfacial phenomena on macroscopic electrode properties.

5.
ACS Cent Sci ; 4(4): 493-503, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29721532

RESUMO

Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity.

6.
Int J Mol Sci ; 19(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385725

RESUMO

Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S-(p-bromobenzyl) glutathione dicyclopentyl ester (p-BrBzGSH(Cp)2) increased levels of the DNA-AGE N²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp)2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.


Assuntos
Neoplasias Encefálicas , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma , Lactoilglutationa Liase , Proteínas de Neoplasias , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto
7.
ACS Appl Mater Interfaces ; 8(35): 23028-36, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27532334

RESUMO

Transition metal oxides are usually used as catalysts in the air cathode of lithium-air (Li-air) batteries. This study elucidates the mechanistic origin of the oxygen reduction reaction catalyzed by δ-MnO2 monolayers and maps the conditions for Li2O2 growth using a combination of first-principles calculations and mesoscale modeling. The MnO2 monolayer, in the absence of an applied potential, preferentially reacts with a Li atom instead of an O2 molecule to initiate the formation of LiO2. The oxygen reduction products (LiO2, Li2O2, and Li2O molecules) strongly interact with the MnO2 monolayer via the stabilization of Li-O chemical bonds with lattice oxygen atoms. As compared to the disproportionation reaction, direct lithiation reactions are the primary contributors to the stabilization of Li2O2 on the MnO2 monolayer. The energy profiles of (Li2O2)2 and (Li2O)2 nucleation on δ-MnO2 monolayer during the discharge process demonstrate that Li2O2 is the predominant discharge product and that further reduction to Li2O is inhibited by the high overpotential of 1.21 V. Interface structures have been examined to study the interaction between the Li2O2 and MnO2 layers. This study demonstrates that a Li2O2 film can be homogeneously deposited onto δ-MnO2 and that the Li2O2/MnO2 interface acts as an electrical conductor. A mesoscale model, developed based on findings from the first-principles calculations, further shows that Li2O2 is the primary product of electrochemical reactions when the applied potential is smaller than 2.4 V.

8.
Nat Commun ; 7: 12022, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27349567

RESUMO

The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V2O5, lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V2O5 framework couple to local structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation.

9.
Chemphyschem ; 16(13): 2842-2848, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26227822

RESUMO

Interfacing graphene with metal oxides is of considerable technological importance for modulating carrier density through electrostatic gating as well as for the design of earth-abundant electrocatalysts. Herein, we probe the early stages of the atomic layer deposition (ALD) of HfO2 on graphene oxide using a combination of C and O K-edge near-edge X-ray absorption fine structure spectroscopies and X-ray photoelectron spectroscopy. Dosing with water is observed to promote defunctionalization of graphene oxide as a result of the reaction between water and hydroxyl/epoxide species, which yields carbonyl groups that further react with migratory epoxide species to release CO2 . The carboxylates formed by the reaction of carbonyl and epoxide species facilitate binding of Hf precursors to graphene oxide surfaces. The ALD process is accompanied by recovery of the π-conjugated framework of graphene. The delineation of binding modes provides a means to rationally assemble 2D heterostructures.

10.
J Phys Chem Lett ; 4(18): 3144-51, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-26705577

RESUMO

The oxidative chemistry of graphite has been investigated for over 150 years and has attracted renewed interest given the importance of exfoliated graphene oxide as a precursor to chemically derived graphene. However, the bond connectivities, steric orientations, and spatial distribution of functional groups remain to be unequivocally determined for this highly inhomogeneous nonstoichiometric material. Here, we demonstrate the application of principal component analysis to scanning transmission X-ray microscopy data for the construction of detailed real space chemical maps of graphene oxide. These chemical maps indicate very distinct functionalization motifs at the edges and interiors and, in conjunction with angle-resolved near-edge X-ray absorption fine structure spectroscopy, enable determination of the spatial location and orientations of functional groups. Chemical imaging of graphene oxide provides experimental validation of the modified Lerf-Klinowski structural model. Specifically, we note increased contributions from carboxylic acid moieties at edge sites with epoxide and hydroxyl species dominant within the interior domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...