Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Invasions ; 26(7): 2037-2047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947421

RESUMO

Expansion of global commerce has facilitated pathogen pollution via the transportation and translocation of invasive species and their associated parasites and pathogens. In Florida, imported cane toads (Rhinella horribilis) were accidentally and intentionally released on multiple occasions. Early populations were found to be infested with the invasive tick, Amblyomma rotundatum, yet it is unknown if these ticks dispersed with their hosts as cane toads spread throughout much of the state. The objectives of our investigation were to (1) determine if there are fewer tick infestations on toads at the periphery than at the core of their distribution as predicted by founder effect events, and (2) identify if ticks were infected with exotic pathogens. We captured toads from 10 populations across Florida. We collected ticks, vent tissue, and tick attachment site tissue from each toad, then tested samples for bacteria in the genus, Rickettsia. We found that 3/10 populations had toads that were infested with A. rotundatum, and infested individuals were in the earliest introduced populations at the core of their distribution. Pathogen testing confirmed Rickettisa bellii in ticks, but not in toad tissues. Haplotype networks could not clearly distinguish if R. bellii in Florida was more closely related to North or South American strains, but host-tick associations suggest that the pathogen was exotic to Florida. Our investigation demonstrated that an invasive species facilitated the introduction of parasites and pathogens into Florida, yet the invasive tick species encountered limitations to dispersal on this host species. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-024-03291-9.

2.
Microorganisms ; 11(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985329

RESUMO

Tick-borne infections are an increasing medical and veterinary concern in the southeastern United States, but there is limited understanding of how recreational greenspaces influence the hazard of pathogen transmission. This study aimed to estimate the potential human and companion animal encounter risk with different questing tick species, and the bacterial or protozoal agents they carry in recreational greenspaces. We collected ticks bimonthly along trails and designated recreational areas in 17 publicly accessible greenspaces, in and around Gainesville, Florida, USA. We collected Amblyomma americanum, Ixodes scapularis, Amblyomma maculatum, Dermacentor variabilis, Ixodes affinis, and Haemaphysalis leporispalustris. Across the six tick species collected, we detected 18 species of bacteria or protozoa within the Babesia, Borrelia, Cytauxzoon, Cryptoplasma (Allocryptoplasma), Ehrlichia, Hepatozoon, Rickettsia, and Theileria genera, including pathogens of medical or veterinary importance. While tick abundance and associated microorganism prevalence and richness were the greatest in natural habitats surrounded by forests, we found both ticks and pathogenic microorganisms in manicured groundcover. This relationship is important for public health and awareness, because it suggests that the probability of encountering an infected tick is measurable and substantial even on closely manicured turf or gravel, if the surrounding landcover is undeveloped. The presence of medically important ticks and pathogenic microorganisms in recreational greenspaces indicates that public education efforts regarding ticks and tick-borne diseases are warranted in this region of the United States.

3.
Insects ; 10(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540253

RESUMO

Within the past three decades, new bacterial etiological agents of tick-borne disease have been discovered in the southeastern U.S., and the number of reported tick-borne pathogen infections has increased. In Florida, few systematic studies have been conducted to determine the presence of tick-borne bacterial pathogens. This investigation examined the distribution and presence of tick-borne bacterial pathogens in Florida. Ticks were collected by flagging at 41 field sites, spanning the climatic regions of mainland Florida. DNA was extracted individually from 1608 ticks and screened for Anaplasma, Borrelia, Ehrlichia and Rickettsia using conventional PCR and primers that amplified multiple species for each genus. PCR positive samples were Sanger sequenced. Four species of ticks were collected: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. Within these ticks, six bacterial species were identified: Borrelia burgdorferi, Borrelia lonestari, Ehrlichia ewingii, Rickettsia amblyommatis, Rickettsia andeanae, Rickettsia parkeri, and Rickettsia endosymbionts. Pathogenic Borrelia, Ehrlichia, and Rickettsia species were all detected in the North and North-Central Florida counties; however, we found only moderate concordance between the distribution of ticks infected with pathogenic bacteria and human cases of tick-borne diseases in Florida. Given the diversity and numerous bacterial species detected in ticks in Florida, further investigations should be conducted to identify regional hotspots of tick-borne pathogens.

4.
Parasit Vectors ; 9(1): 447, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519588

RESUMO

BACKGROUND: Adult mosquito density is a critical factor in the transmission of arboviruses by container Aedes spp. mosquitoes. Female fecundity drives population growth, and therefore contributes to adult mosquito density. Previous studies have focused on female body size as the major determinant of fecundity, paying little attention to male condition. In this study, we examined the effects of male body size on the abundance of sperm in spermatheca, depletion of sperm over time, and female fecundity. METHODS: We generated males in two size classes using different larval densities, and allowed them to mate with females generated from a moderately dense larval environment. We counted sperm in female spermatheca in a sample of females immediately after mating, then every week for four weeks post-mating. We provided weekly blood meals to females and determined their fecundity over four weeks after the initial blood meal. RESULTS: We found significantly more sperm in Aedes albopictus females than in Aedes aegypti, and detected depletion of sperm in Ae. aegypti, but not in Ae. albopictus. We did not see significant differences in number of sperm in spermathecae in relation to male body size in either species over subsequent gonotrophic cycles. We found a significant effect of male body size on fecundity in Ae. albopictus, but not Ae. aegypti, with a 46 % increase in fecundity for female Ae. albopictus offered four blood meals. CONCLUSIONS: Our results suggest substantial differences in the mating biology of these ecologically similar species and the importance of considering males in understanding female fecundity. The substantial increase in fecundity in Ae. albopictus has implications for population growth, estimating vector density, and modeling the transmission of pathogens.


Assuntos
Aedes/anatomia & histologia , Aedes/fisiologia , Comportamento Sexual Animal , Animais , Tamanho Corporal , Contagem de Células , Feminino , Fertilidade , Masculino , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...