Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713514

RESUMO

Pancreatic ß-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in ß-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human ß-cells. Mice with ß-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.

2.
Elife ; 122023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732504

RESUMO

Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity. The α-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form α-pseudoislets. The α-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key α-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in α-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary α-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Glucagon/metabolismo , Transcriptoma , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Fluoresceínas/metabolismo , Células Secretoras de Insulina/metabolismo
3.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577492

RESUMO

N 6 -methyladenosine (m 6 A) is the most abundant chemical modification in mRNA, and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported, for the first time, the role of m 6 A in the postnatal control of ß-cell function in physiological states and in Type 1 and 2 Diabetes. However, the precise mechanisms by which m 6 A acts to regulate the development of human and mouse ß-cells are unexplored. Here, we show that the m 6 A landscape is dynamic during human pancreas development, and that METTL14, one of the m 6 A writer complex proteins, is essential for the early differentiation of both human and mouse ß-cells.

4.
J Biol Chem ; 299(8): 104986, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392854

RESUMO

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Assuntos
3-Hidroxiacil-CoA Desidrogenase , Aminoácidos , Hiperinsulinismo Congênito , Hipoglicemia , Secreção de Insulina , Células Secretoras de Insulina , Animais , Camundongos , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Hipoglicemia/enzimologia , Hipoglicemia/genética , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos Knockout , 3-Hidroxiacil-CoA Desidrogenase/deficiência , 3-Hidroxiacil-CoA Desidrogenase/genética , Células Secretoras de Insulina/enzimologia , Hiperinsulinismo Congênito/genética
5.
Cell Chem Biol ; 30(9): 1144-1155.e4, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37354909

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. We recently discovered that neuronal regeneration-related protein (NREP/P311), an epigenetically regulated gene reprogrammed by parental metabolic syndrome, is downregulated in human NAFLD. To investigate the impact of NREP insufficiency, we used RNA-sequencing, lipidomics, and antibody microarrays on primary human hepatocytes. NREP knockdown induced transcriptomic remodeling that overlapped with key pathways impacted in human steatosis and steatohepatitis. Additionally, we observed enrichment of pathways involving phosphatidylinositol signaling and one-carbon metabolism. Lipidomics analyses also revealed an increase in cholesterol esters and triglycerides and decreased phosphatidylcholine levels in NREP-deficient hepatocytes. Signalomics identified calcium signaling as a potential mediator of NREP insufficiency's effects. Our results, together with the encouraging observation that several single nucleotide polymorphisms (SNPs) spanning the NREP locus are associated with metabolic traits, provide a strong rationale for targeting hepatic NREP to improve NAFLD pathophysiology.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Carbono/metabolismo
6.
Cell Metab ; 35(7): 1242-1260.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37339634

RESUMO

Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing ß cells. Thus, the identification of ß cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human ß cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates ß cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts ß cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent ß cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-ß cell crosstalk that acts to limit ß cell viability, leading to T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Células Acinares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Elastase Pancreática/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Comunicação Celular
7.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292780

RESUMO

Brown adipose tissue (BAT) has the capacity to regulate systemic metabolism through the secretion of signaling lipids. N6-methyladenosine (m 6 A) is the most prevalent and abundant post-transcriptional mRNA modification and has been reported to regulate BAT adipogenesis and energy expenditure. In this study, we demonstrate that the absence of m 6 A methyltransferase-like 14 (METTL14), modifies the BAT secretome to initiate inter-organ communication to improve systemic insulin sensitivity. Importantly, these phenotypes are independent of UCP1-mediated energy expenditure and thermogenesis. Using lipidomics, we identified prostaglandin E2 (PGE2) and prostaglandin F2a (PGF2a) as M14 KO -BAT-secreted insulin sensitizers. Notably, circulatory PGE2 and PGF2a levels are inversely correlated with insulin sensitivity in humans. Furthermore, in vivo administration of PGE2 and PGF2a in high-fat diet-induced insulin-resistant obese mice recapitulates the phenotypes of METTL14 deficient animals. PGE2 or PGF2a improves insulin signaling by suppressing the expression of specific AKT phosphatases. Mechanistically, METTL14-mediated m 6 A installation promotes decay of transcripts encoding prostaglandin synthases and their regulators in human and mouse brown adipocytes in a YTHDF2/3-dependent manner. Taken together, these findings reveal a novel biological mechanism through which m 6 A-dependent regulation of BAT secretome regulates systemic insulin sensitivity in mice and humans. Highlights: Mettl14 KO -BAT improves systemic insulin sensitivity via inter-organ communication; PGE2 and PGF2a are BAT-secreted insulin sensitizers and browning inducers;PGE2 and PGF2a sensitize insulin responses through PGE2-EP-pAKT and PGF2a-FP-AKT axis; METTL14-mediated m 6 A installation selectively destabilizes prostaglandin synthases and their regulator transcripts; Targeting METTL14 in BAT has therapeutic potential to enhance systemic insulin sensitivity.

8.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824909

RESUMO

Type 1 Diabetes (T1D) is characterized by autoimmune-mediated destruction of insulin-producing ß-cells. Several observations have renewed interest in the innate immune system as an initiator of the disease process against ß-cells. Here, we show that N 6 -Methyladenosine (m 6 A) is an adaptive ß-cell safeguard mechanism that accelerates mRNA decay of the 2'-5'-oligoadenylate synthetase (OAS) genes to control the antiviral innate immune response at T1D onset. m 6 A writer methyltransferase 3 (METTL3) levels increase drastically in human and mouse ß-cells at T1D onset but rapidly decline with disease progression. Treatment of human islets and EndoC-ßH1 cells with pro-inflammatory cytokines interleukin-1 ß and interferon α mimicked the METTL3 upregulation seen at T1D onset. Furthermore, m 6 A-sequencing revealed the m 6 A hypermethylation of several key innate immune mediators including OAS1, OAS2, and OAS3 in human islets and EndoC-ßH1 cells challenged with cytokines. METTL3 silencing in human pseudoislets or EndoC-ßH1 cells enhanced OAS levels by increasing its mRNA stability upon cytokine challenge. Consistently, in vivo gene therapy, to prolong Mettl3 overexpression specifically in ß-cells, delayed diabetes progression in the non-obese diabetic (NOD) mouse model of T1D by limiting the upregulation of Oas pointing to potential therapeutic relevance. Mechanistically, the accumulation of reactive oxygen species blocked METTL3 upregulation in response to cytokines, while physiological levels of nitric oxide promoted its expression in human islets. Furthermore, for the first time to our knowledge, we show that the cysteines in position C276 and C326 in the zinc finger domain of the METTL3 protein are sensitive to S-nitrosylation (SNO) and are significant for the METTL3 mediated regulation of OAS mRNA stability in human ß-cells in response to cytokines. Collectively, we report that m 6 A regulates human and mouse ß-cells to control the innate immune response during the onset of T1D and propose targeting METTL3 to prevent ß-cell death in T1D.

9.
Nat Commun ; 13(1): 7323, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443308

RESUMO

Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10-/- mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse. Furthermore, neutralization of circulating scEMC10 using a monoclonal antibody reduces body weight and enhances insulin sensitivity in obese mice. Mechanistically, we provide evidence that scEMC10 can be transported into cells where it binds to the catalytic subunit of PKA and inhibits its stimulatory action on CREB while ablation of EMC10 promotes thermogenesis in adipocytes via activation of the PKA signalling pathway and its downstream targets. Taken together, our data identify scEMC10 as a circulating inhibitor of thermogenesis and a potential therapeutic target for obesity and its cardiometabolic complications.


Assuntos
Anticorpos Neutralizantes , Resistência à Insulina , Humanos , Camundongos , Animais , Dieta , Obesidade/genética , Obesidade/prevenção & controle , Transporte Biológico , Camundongos Obesos , Proteínas de Membrana
10.
Cell Rep ; 41(1): 111436, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198264

RESUMO

Prevention or amelioration of declining ß cell mass is a potential strategy to cure diabetes. Here, we report the pathways utilized by ß cells to robustly replicate in response to acute insulin resistance induced by S961, a pharmacological insulin receptor antagonist. Interestingly, pathways that include CENP-A and the transcription factor E2F1 that are independent of insulin signaling and its substrates appeared to mediate S961-induced ß cell multiplication. Consistently, pharmacological inhibition of E2F1 blocks ß-cell proliferation in S961-injected mice. Serum from S961-treated mice recapitulates replication of ß cells in mouse and human islets in an E2F1-dependent manner. Co-culture of islets with adipocytes isolated from S961-treated mice enables ß cells to duplicate, while E2F1 inhibition limits their growth even in the presence of adipocytes. These data suggest insulin resistance-induced proliferative signals from adipocytes activate E2F1, a potential therapeutic target, to promote ß cell compensation.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina , Animais , Proliferação de Células , Proteína Centromérica A/metabolismo , Fator de Transcrição E2F1/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Receptor de Insulina/metabolismo
11.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320000

RESUMO

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Resistência à Insulina/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/metabolismo
13.
J Clin Invest ; 130(5): 2391-2407, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32250344

RESUMO

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Although gene-environment interactions have been implicated in the etiology of several disorders, the impact of paternal and/or maternal metabolic syndrome on the clinical phenotypes of offspring and the underlying genetic and epigenetic contributors of NAFLD have not been fully explored. To this end, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique nondietary model manifesting 3 hallmarks that confer high risk for the development of NAFLD: hyperglycemia, insulin resistance, and dyslipidemia. We report that parental metabolic syndrome epigenetically reprograms members of the TGF-ß family, including neuronal regeneration-related protein (NREP) and growth differentiation factor 15 (GDF15). NREP and GDF15 modulate the expression of several genes involved in the regulation of hepatic lipid metabolism. In particular, NREP downregulation increases the protein abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ATP-citrate lyase (ACLY) in a TGF-ß receptor/PI3K/protein kinase B-dependent manner, to regulate hepatic acetyl-CoA and cholesterol synthesis. Reduced hepatic expression of NREP in patients with NAFLD and substantial correlations between low serum NREP levels and the presence of steatosis and nonalcoholic steatohepatitis highlight the clinical translational relevance of our findings in the context of recent preclinical trials implicating ACLY in NAFLD progression.


Assuntos
Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia
14.
Diabetologia ; 63(3): 577-587, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31897526

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, which prevent the renal reabsorption of glucose, decrease blood glucose levels in an insulin-independent manner. We previously reported creating a mouse model of systemic inhibition of target receptors for both insulin and IGF-1 by treating animals with OSI-906, a dual insulin/IGF-1 receptor inhibitor, for 7 days. The OSI-906-treated mice exhibited an increased beta cell mass, hepatic steatosis and adipose tissue atrophy, accompanied by hyperglycaemia and hyperinsulinaemia. In the present study, we investigated the effects of an SGLT2 inhibitor, luseogliflozin, on these changes in OSI-906-treated mice. METHODS: We treated C57BL/6J male mice either with vehicle, luseogliflozin, OSI-906 or OSI-906 plus luseogliflozin for 7 days, and phenotyping was performed to determine beta cell mass and proliferation. Subsequently, we tested whether serum-derived factors have an effect on beta cell proliferation in genetically engineered beta cells, mouse islets or human islets. RESULTS: SGLT2 inhibition with luseogliflozin significantly ameliorated hyperglycaemia, but not hyperinsulinaemia, in the OSI-906-treated mice. Liver steatosis and adipose tissue atrophy induced by OSI-906 were not altered by treatment with luseogliflozin. Beta cell mass and proliferation were further increased by SGLT2 inhibition with luseogliflozin in the OSI-906-treated mice. Luseogliflozin upregulated gene expression related to the forkhead box M1 (FoxM1)/polo-like kinase 1 (PLK1)/centromere protein A (CENP-A) pathway in the islets of OSI-906-treated mice. The increase in beta cell proliferation was recapitulated in a co-culture of Irs2 knockout and Insr/IR knockout (ßIRKO) beta cells with serum from both luseogliflozin- and OSI-906-treated mice, but not after SGLT2 inhibition in beta cells. Circulating factors in both luseogliflozin- and OSI-906-treated mice promoted beta cell proliferation in both mouse islets and cadaveric human islets. CONCLUSIONS/INTERPRETATION: These results suggest that luseogliflozin can increase beta cell proliferation through the activation of the FoxM1/PLK1/CENP-A pathway via humoral factors that act in an insulin/IGF-1 receptor-independent manner.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Sorbitol/análogos & derivados , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Sinergismo Farmacológico , Técnicas de Inativação de Genes , Humanos , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Células Secretoras de Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Pirazinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sorbitol/farmacologia
15.
Genome Biol ; 20(1): 294, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870409

RESUMO

Epitranscriptome profiling using MeRIP-seq is a powerful technique for in vivo functional studies of reversible RNA modifications. We develop RADAR, a comprehensive analytical tool for detecting differentially methylated loci in MeRIP-seq data. RADAR enables accurate identification of altered methylation sites by accommodating variability of pre-immunoprecipitation expression level and post-immunoprecipitation count using different strategies. In addition, it is compatible with complex study design when covariates need to be incorporated in the analysis. Through simulation and real dataset analyses, we show that RADAR leads to more accurate and reproducible differential methylation analysis results than alternatives, which is available at https://github.com/scottzijiezhang/RADAR.


Assuntos
Modelos Estatísticos , Análise de Sequência de RNA , Software , Animais , Humanos , Imunoprecipitação , Metilação , Camundongos Knockout
16.
Nat Metab ; 1(8): 765-774, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31867565

RESUMO

The regulation of islet cell biology is critical for glucose homeostasis1.N6 -methyladenosine (m6A) is the most abundant internal messenger RNA (mRNA) modification in mammals2. Here we report that the m6A landscape segregates human type 2 diabetes (T2D) islets from controls significantly better than the transcriptome and that m6A is vital for ß-cell biology. m6A-sequencing in human T2D islets reveals several hypomethylated transcripts involved in cell-cycle progression, insulin secretion, and the Insulin/IGF1-AKT-PDX1 pathway. Depletion of m6A levels in EndoC-ßH1 induces cell-cycle arrest and impairs insulin secretion by decreasing AKT phosphorylation and PDX1 protein levels. ß-cell specific Mettl14 knock-out mice, which display reduced m6A levels, mimic the islet phenotype in human T2D with early diabetes onset and mortality due to decreased ß-cell proliferation and insulin degranulation. Our data underscore the significance of RNA methylation in regulating human ß-cell biology, and provide a rationale for potential therapeutic targeting of m6A modulators to preserve ß-cell survival and function in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Insulina/fisiologia , RNA Mensageiro/metabolismo , Animais , Humanos , Secreção de Insulina , Metilação
17.
Mol Metab ; 27S: S42-S48, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500830

RESUMO

BACKGROUND: Pancreatic ß-cells adapt to high metabolic demand by expanding their ß-cell mass and/or enhancing insulin secretion to maintain glucose homeostasis. Type 2 diabetes (T2D) is typically characterized by ß-cell decompensation. SCOPE OF THE REVIEW: The current review focuses on summarizing the "omics" and "epi-omics" approaches that particularly focus on addressing the ß-cell adaptation to insulin resistance and T2D. MAJOR CONCLUSIONS: The molecular mechanisms underlying successful versus compromised ß-cell adaptation to insulin resistance are not entirely understood. The last decade has seen an exponential increase in the use of "omics" and "epi-omics" approaches to dissect pathophysiology of metabolic diseases. One recent example is the emergence of m6A mRNA methylation as a new layer of regulation of gene expression with the potential to impact diverse physiological processes in metabolic cells.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Adaptação Fisiológica , Animais , Humanos , Resistência à Insulina
18.
Nat Metab ; 1(5): 509-518, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31423480

RESUMO

Type 1 diabetes (T1D) is characterized by pancreatic islet infiltration by autoreactive immune cells and a near-total loss of ß-cells1. Restoration of insulin-producing ß-cells coupled with immunomodulation to suppress the autoimmune attack has emerged as a potential approach to counter T1D2-4. Here we report that enhancing ß-cell mass early in life, in two models of female NOD mice, results in immunomodulation of T-cells, reduced islet infiltration and lower ß-cell apoptosis, that together protect them from developing T1D. The animals displayed altered ß-cell antigens, and islet transplantation studies showed prolonged graft survival in the NOD-LIRKO model. Adoptive transfer of splenocytes from the NOD-LIRKOs prevented development of diabetes in pre-diabetic NOD mice. A significant increase in the splenic CD4+CD25+FoxP3+ regulatory T-cell (Treg) population was observed to underlie the protected phenotype since Treg depletion rendered NOD-LIRKO mice diabetic. The increase in Tregs coupled with activation of TGF-ß/SMAD3 signaling pathway in pathogenic T-cells favored reduced ability to kill ß-cells. These data support a previously unidentified observation that initiating ß-cell proliferation, alone, prior to islet infiltration by immune cells alters the identity of ß-cells, decreases pathologic self-reactivity of effector cells and increases Tregs to prevent progression of T1D.


Assuntos
Proliferação de Células , Diabetes Mellitus Tipo 1/patologia , Sistema Imunitário/imunologia , Células Secretoras de Insulina/patologia , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Progressão da Doença , Humanos , Camundongos
19.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996131

RESUMO

The identification of new sources of ß cells is an important endeavor with therapeutic implications for diabetes. Insulin resistance, in physiological states such as pregnancy or in pathological states such as type 2 diabetes (T2D), is characterized by a compensatory increase in ß cell mass. To explore the existence of a dynamic ß cell reserve, we superimposed pregnancy on the liver-specific insulin receptor-KO (LIRKO) model of insulin resistance that already exhibits ß cell hyperplasia and used lineage tracing to track the source of new ß cells. Although both control and LIRKO mice displayed increased ß cell mass in response to the relative insulin resistance of pregnancy, the further increase in mass in the latter supported a dynamic source that could be traced to pancreatic ducts. Two observations support the translational significance of these findings. First, NOD/SCID-γ LIRKO mice that became pregnant following cotransplantation of human islets and human ducts under the kidney capsule showed enhanced ß cell proliferation and an increase in ductal cells positive for transcription factors expressed during ß cell development. Second, we identified duct cells positive for immature ß cell markers in pancreas sections from pregnant humans and in individuals with T2D. Taken together, during increased insulin demand, ductal cells contribute to the compensatory ß cell pool by differentiation/neogenesis.


Assuntos
Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/terapia , Células Secretoras de Insulina/fisiologia , Ductos Pancreáticos/citologia , Gravidez/fisiologia , Adulto , Animais , Proliferação de Células , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ductos Pancreáticos/transplante , Receptor de Insulina/genética , Quimeras de Transplante , Adulto Jovem
20.
Diabetes ; 68(5): 1084-1093, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833467

RESUMO

Solute Carrier Family 19 Member 2 (SLC19A2) encodes thiamine transporter 1 (THTR1), which facilitates thiamine transport across the cell membrane. SLC19A2 homozygous mutations have been described as a cause of thiamine-responsive megaloblastic anemia (TRMA), an autosomal recessive syndrome characterized by megaloblastic anemia, diabetes, and sensorineural deafness. Here we describe a loss-of-function SLC19A2 mutation (c.A1063C: p.Lys355Gln) in a family with early-onset diabetes and mild TRMA traits transmitted in an autosomal dominant fashion. We show that SLC19A2-deficient ß-cells are characterized by impaired thiamine uptake, which is not rescued by overexpression of the p.Lys355Gln mutant protein. We further demonstrate that SLC19A2 deficit causes impaired insulin secretion in conjunction with mitochondrial dysfunction, loss of protection against oxidative stress, and cell cycle arrest. These findings link SLC19A2 mutations to autosomal dominant diabetes and suggest a role of SLC19A2 in ß-cell function and survival.


Assuntos
Anemia Megaloblástica/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Anemia Megaloblástica/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Insulina/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Tiamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...