Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 6(2): veaa092, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33408879

RESUMO

The fundamental basis of how arboviruses evolve in nature and what regulates the adaptive process remain unclear. To address this problem, we established a Zika virus (ZIKV) vector-borne transmission system in immunocompromised mice to study the evolutionary characteristics of ZIKV infection. Using this system, we defined factors that influence the evolutionary landscape of ZIKV infection and show that transmission route and specific organ microenvironments impact viral diversity and defective viral genome production. In addition, we identified in mice the emergence of ZIKV mutants previously seen in natural infections, including variants present in currently circulating Asian and American strains, as well as mutations unique to the mouse infections. With these studies, we have established an insect-to-mouse transmission model to study ZIKV evolution in vivo. We also defined how organ microenvironments and infection route impact the ZIKV evolutionary landscape, providing a deeper understanding of the factors that regulate arbovirus evolution and emergence.

2.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894466

RESUMO

Arthropod-borne viruses represent a significant public health threat worldwide, yet there are few antiviral therapies or prophylaxes targeting these pathogens. In particular, the development of novel antivirals for high-risk populations such as pregnant women is essential to prevent devastating disease such as that which was experienced with the recent outbreak of Zika virus (ZIKV) in the Americas. One potential avenue to identify new and pregnancy-acceptable antiviral compounds is to repurpose well-known and widely used FDA-approved drugs. In this study, we addressed the antiviral role of atovaquone, an FDA Pregnancy Category C drug and pyrimidine biosynthesis inhibitor used for the prevention and treatment of parasitic infections. We found that atovaquone was able to inhibit ZIKV and chikungunya virus virion production in human cells and that this antiviral effect occurred early during infection at the initial steps of viral RNA replication. Moreover, we were able to complement viral replication and virion production with the addition of exogenous pyrimidine nucleosides, indicating that atovaquone functions through the inhibition of the pyrimidine biosynthesis pathway to inhibit viral replication. Finally, using an ex vivo human placental tissue model, we found that atovaquone could limit ZIKV infection in a dose-dependent manner, providing evidence that atovaquone may function as an antiviral in humans. Taken together, these studies suggest that atovaquone could be a broad-spectrum antiviral drug and a potential attractive candidate for the prophylaxis or treatment of arbovirus infection in vulnerable populations, such as pregnant women and children.IMPORTANCE The ability to protect vulnerable populations such as pregnant women and children from Zika virus and other arbovirus infections is essential to preventing the devastating complications induced by these viruses. One class of antiviral therapies may lie in known pregnancy-acceptable drugs that have the potential to mitigate arbovirus infections and disease, yet this has not been explored in detail. In this study, we show that the common antiparasitic drug atovaquone inhibits arbovirus replication through intracellular nucleotide depletion and can impair ZIKV infection in an ex vivo human placental explant model. Our study provides a novel function for atovaquone and highlights that the rediscovery of pregnancy-acceptable drugs with potential antiviral effects can be the key to better addressing the immediate need for treating viral infections and preventing potential birth complications and future disease.


Assuntos
Arbovírus/efeitos dos fármacos , Atovaquona/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Arbovírus/metabolismo , Atovaquona/metabolismo , Linhagem Celular , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Chlorocebus aethiops , Citoplasma/metabolismo , Feminino , Células HEK293 , Humanos , Placenta , Gravidez , Nucleotídeos de Pirimidina/antagonistas & inibidores , Pirimidinas/biossíntese , Células Vero , Proteínas não Estruturais Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos , Zika virus/genética , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...