Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 4(1): 101-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819236

RESUMO

Temperature governs most biotic processes, yet we know little about how warming affects whole ecosystems. Here we examined the responses of 128 components of a subarctic grassland to either 5-8 or >50 years of soil warming. Warming of >50 years drove the ecosystem to a new steady state possessing a distinct biotic composition and reduced species richness, biomass and soil organic matter. However, the warmed state was preceded by an overreaction to warming, which was related to organism physiology and was evident after 5-8 years. Ignoring this overreaction yielded errors of >100% for 83 variables when predicting their responses to a realistic warming scenario of 1 °C over 50 years, although some, including soil carbon content, remained stable after 5-8 years. This study challenges long-term ecosystem predictions made from short-term observations, and provides a framework for characterization of ecosystem responses to sustained climate change.


Assuntos
Ecossistema , Pradaria , Ciclo do Carbono , Mudança Climática , Solo
2.
Proc Natl Acad Sci U S A ; 115(43): 10926-10931, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301807

RESUMO

Terrestrial paleoclimate archives such as lake sediments are essential for our understanding of the continental climate system and for the modeling of future climate scenarios. However, quantitative proxies for the determination of paleotemperatures are sparse. The relative abundances of certain bacterial lipids, i.e., branched glycerol dialkyl glycerol tetraethers (brGDGTs), respond to changes in environmental temperature, and thus have great potential for climate reconstruction. Their application to lake deposits, however, is hampered by the lack of fundamental knowledge on the ecology of brGDGT-producing microbes in lakes. Here, we show that brGDGTs are synthesized by multiple groups of bacteria thriving under contrasting redox regimes in a deep meromictic Swiss lake (Lake Lugano). This niche partitioning is evidenced by highly distinct brGDGT inventories in oxic vs. anoxic water masses, and corresponding vertical patterns in bacterial 16S rRNA gene abundances, implying that sedimentary brGDGT records are affected by temperature-independent changes in the community composition of their microbial producers. Furthermore, the stable carbon isotope composition (δ13C) of brGDGTs in Lake Lugano and 34 other (peri-)Alpine lakes attests to the widespread heterotrophic incorporation of 13C-depleted, methane-derived biomass at the redox transition zone of mesotrophic to eutrophic lake systems. The brGDGTs produced under such hypoxic/methanotrophic conditions reflect near-bottom water temperatures, and are characterized by comparatively low δ13C values. Depending on climate zone and water depth, lake sediment archives predominated by deeper water/low-13C brGDGTs may provide more reliable records of climate variability than those where brGDGTs derive from terrestrial and/or aquatic sources with distinct temperature imprints.


Assuntos
Bactérias/metabolismo , Glicerol/metabolismo , Lagos/microbiologia , Lipídeos/química , Biomassa , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecologia , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , RNA Ribossômico 16S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...