Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cancer ; 24(4): 240-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424304

RESUMO

Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Neoplasias/tratamento farmacológico , Fosforilação , Fatores de Transcrição , Proteínas Oncogênicas
2.
ACS Appl Mater Interfaces ; 11(9): 8749-8762, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30734555

RESUMO

Effective bone tissue engineering can restore bone and skeletal functions that are impaired by traumas and/or certain medical conditions. Bone is a complex tissue and functions through orchestrated interactions between cells, biomechanical forces, and biofactors. To identify ideal scaffold materials for effective mesenchymal stem cell (MSC)-based bone tissue regeneration, here we develop and characterize a composite nanoparticle hydrogel by combining carboxymethyl chitosan (CMCh) and amorphous calcium phosphate (ACP) (designated as CMCh-ACP hydrogel). We demonstrate that the CMCh-ACP hydrogel is readily prepared by incorporating glucono δ-lactone (GDL) into an aqueous dispersion or rehydrating the acidic freeze-dried nanoparticles in a pH-triggered controlled-assembly fashion. The CMCh-ACP hydrogel exhibits excellent biocompatibility and effectively supports MSC proliferation and cell adhesion. Moreover, while augmenting BMP9-induced osteogenic differentiation, the CMCh-ACP hydrogel itself is osteoinductive and induces the expression of osteoblastic regulators and bone markers in MSCs in vitro. The CMCh-ACP scaffold markedly enhances the efficiency and maturity of BMP9-induced bone formation in vivo, while suppressing bone resorption occurred in long-term ectopic osteogenesis. Thus, these results suggest that the pH-responsive self-assembled CMCh-ACP injectable and bioprintable hydrogel may be further exploited as a novel scaffold for osteoprogenitor-cell-based bone tissue regeneration.


Assuntos
Bioimpressão , Hidrogéis/química , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Osso e Ossos/fisiologia , Fosfatos de Cálcio/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/química , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...