Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406112

RESUMO

Obesity is one of the leading public health problems that can result in life-threatening metabolic and chronic diseases such as cardiovascular diseases, diabetes, and cancer. Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop in the world and certain genotypes of sorghum have high polyphenol content. PI570481, SC84, and commercially available sumac sorghum are high-polyphenol genotypes that have demonstrated strong anti-cancer activities in previous studies. The objective of this study was to explore a potential anti-obesity use of extracts from sorghum bran in the differentiation of 3T3-L1 preadipocytes and to investigate cellular and molecular responses in differentiated adipocytes to elucidate related mechanisms. None of the four different sorghum bran extracts (PI570481, SC84, Sumac, and white sorghum as a low-polyphenol control) caused cytotoxicity in undifferentiated and differentiated 3T3-L1 cells at doses used in this study. Sorghum bran extracts (PI570481, SC84, and Sumac) reduced intracellular lipid accumulation and expression of adipogenic and lipogenic proteins in a dose-dependent manner in differentiated 3T3-L1 cells. The same polyphenol containing sorghum bran extracts also repressed production of reactive oxygen species (ROS) and MAPK signaling pathways and repressed insulin signaling and glucose uptake in differentiated 3T3-L1 cells. These data propose a potential use of high-phenolic sorghum bran for the prevention of obesity.


Assuntos
Sorghum , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Grão Comestível , Camundongos , Obesidade/metabolismo , Fenóis/metabolismo , Fenóis/farmacologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/metabolismo , Polifenóis/farmacologia
2.
Curr Trop Med Rep ; 2(3): 136-143, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26587369

RESUMO

Sphingolipids are sphingosine-based phospholipids, which are present in the plasma and endomembranes of many eukaryotic cells. These lipids are involved in various cellular functions, including cell growth, differentiation, and apoptosis. In addition, sphingolipid and cholesterol-enriched membrane microdomains (also called "lipid rafts") contain a set of proteins and lipids, which take part in the signaling process in response to intra- or extracellular stimuli. Recent findings suggest that sphingolipids, especially glucosylceramide, play a critical role in inducing encystation and maintaining the cyst viability in Giardia. Similarly, the assembly/disassembly of lipid rafts modulates the encystation and cyst production of this ubiquitous enteric parasite. In this review article, we discuss the overall progress in the field and examine whether sphingolipids and lipid rafts can be used as novel targets for designing therapies to control infection by Giardia, which is rampant in developing countries, where children are especially vulnerable.

3.
J Biol Chem ; 287(53): 44184-91, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23150662

RESUMO

Mycobacterium tuberculosis ESAT-6 (MtbESAT-6) reportedly shows membrane/cell-lysis activity, and recently its biological roles in pathogenesis have been implicated in rupture of the phagosomes for bacterial cytosolic translocation. However, molecular mechanism of MtbESAT-6-mediated membrane interaction, particularly in relation with its biological functions in pathogenesis, is poorly understood. In this study, we investigated the pH-dependent membrane interaction of MtbESAT-6, MtbCFP-10, and the MtbESAT-6/CFP-10 heterodimer, by using liposomal model membranes that mimic phagosomal compartments. MtbESAT-6, but neither MtbCFP-10 nor the heterodimer, interacted with the liposomal membranes at acidic conditions, which was evidenced by release of K(+) ions from the liposomes. Most importantly, the orthologous ESAT-6 from non-pathogenic Mycobacterium smegmatis (MsESAT-6) was essentially inactive in release of K(+). The differential membrane interactions between MtbESAT-6 and MsESAT-6 were further confirmed in an independent membrane leakage assay using the dye/quencher pair, 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX). Finally, using intrinsic and extrinsic fluorescence approaches, we probed the pH-dependent conformational changes of MtbESAT-6 and MsESAT-6. At acidic pH conditions, MtbESAT-6 underwent a significant conformational change, which was featured by an increased solvent-exposed hydrophobicity, while MsESAT-6 showed little conformational change in response to acidification. In conclusion, we have demonstrated that MtbESAT-6 possesses a unique membrane-interacting activity that is not found in MsESAT-6 and established the utility of rigorous biochemical approaches in dissecting the virulence of M. tuberculosis.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Dimerização , Dados de Sequência Molecular , Infecções por Mycobacterium/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Ligação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...