Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 815874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295568

RESUMO

Knowledge of biological organisms at the molecular level that has been gathered is now organized into databases, often within ontological frameworks. To enable computational comparisons of annotations across different genomes and organisms, controlled vocabularies have been essential, as is the case in the functional annotation classifications used for bacteria, such as MultiFun and the more widely used Gene Ontology. The function of individual gene products as well as the processes in which collections of them participate constitute a wealth of classes that describe the biological role of gene products in a large number of organisms in the three kingdoms of life. In this contribution, we highlight from a qualitative perspective some limitations of these frameworks and discuss challenges that need to be addressed to bridge the gap between annotation as currently captured by ontologies and databases and our understanding of the basic principles in the organization and functioning of organisms; we illustrate these challenges with some examples in bacteria. We hope that raising awareness of these issues will encourage users of Gene Ontology and similar ontologies to be careful about data interpretation and lead to improved data representation.

2.
Microb Biotechnol ; 14(5): 1944-1960, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156761

RESUMO

The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a ß-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays. The ohpA gene belongs to an operon including also ohpT, coding for a substrate-binding subunit of a putative transporter, whose expression is driven by an inducible promoter responsive to 2-HPA in presence of a predicted OhpR transcriptional regulator. OhpA homologues can be found in several genera belonging to Actinobacteria and α-, ß- and γ-proteobacteria lineages indicating a widespread distribution of 2-HPA catabolism via homogentisate route. These results provide first time evidence for the natural function of members of the CYP116B self-sufficient oxygenases and represent a significant input to support novel kinetic and structural studies to develop cytochrome P450-based biocatalytic processes.


Assuntos
Cupriavidus , Sistema Enzimático do Citocromo P-450 , Cupriavidus/genética , Sistema Enzimático do Citocromo P-450/genética , Fenilacetatos
3.
Environ Microbiol ; 23(5): 2522-2531, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734558

RESUMO

The dnt pathway of Burkholderia sp. R34 is in the midst of an evolutionary journey from its ancestral, natural substrate (naphthalene) towards a new xenobiotic one [2,4-dinitrotoluene (DNT)]. The gene cluster encoding the leading multicomponent ring dioxygenase (DntA) has activity on the old and the new substrate, but it is induced by neither. Instead, the transcriptional factor encoded by the adjacent gene (dntR) activates expression of the dnt cluster upon addition of salicylate, one degradation intermediate of the ancestral naphthalene route but not any longer a substrate/product of the evolved DntA enzyme. Fluorescence of cells bearing dntA-gfp fusions revealed that induction of the dnt genes by salicylate was enhanced upon exposure to bona fide DntA substrates, i.e., naphthalene or DNT. Such amplification was dependent on effective dioxygenation of these pathway-specific head compounds, which thereby fostered expression of the cognate catabolic operon. The phenomenon seems to happen not through direct binding to a cognate transcriptional factor but through the interplay of a non-specific regulator with a substrate-specific enzyme. This regulatory scenario may ease transition of complete catabolic operons (i.e. enzymes plus regulatory devices) from one substrate to another without loss of fitness during the evolutionary roadmap between two optimal specificities.


Assuntos
Biodegradação Ambiental , Burkholderia , Dioxigenases , Animais , Burkholderia/genética , Dinitrobenzenos
4.
Environ Microbiol ; 20(12): 4555-4566, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209872

RESUMO

The presence of some sugars (e.g. glucose) downregulates the activity of the Pu promoter of plasmid pWW0 of Pseudomonas putida mt-2, which drives the upper TOL operon for biodegradation of m-xylene. Genetic evidence produced 20 years ago documented an effect of the EIIANtr (PtsN) protein of the nitrogen-related phosphoenolpyruvate-dependent phosphotransferase system (PTSNtr ) in such a C-source control of Pu activity. In this study, we have exploited the wealth of recent information on the PTS of P. putida as well as transcriptomic data available in the last few years on this bacterium to revisit this question - and the role of EIIANtr as such. To this end, we examined Pu output under physiological conditions known to either phosphorylate PTS proteins to saturation or to deplete them altogether from high-energy phosphate. The results showed that Pu activity is checked by EIIANtr regardless of its phosphorylation state. However, such inhibition is intensified during growth on glucose (which correlates with more phosphate-free EIIANtr ) and partially relieved in fructose, which triggers phosphorylation of PTS proteins. These data explain former inconsistencies on the Pu-PTSNtr interplay and provides a better understanding of the metabolic and regulatory retroactivity between the TOL plasmid and its host metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Regiões Promotoras Genéticas , Pseudomonas putida/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Nitrogênio/metabolismo , Óperon , Fosforilação , Plasmídeos , Pseudomonas putida/genética , Xilenos/metabolismo
5.
Mol Microbiol ; 109(3): 273-277, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30019355

RESUMO

Owing to its role in controlling carbon and energy metabolism, the catabolite repressor/activator protein Cra has been one of the most studied prokaryotic regulators of the last 30 years. Yet, a key mechanistic detail of its biological function - i.e. the nature of the metabolic effector that rules its DNA-binding ability - has remained controversial. Despite the high affinity of Cra for fructose-1-phosphate (F1P), the prevailing view claimed that fructose-1,6-biphosphate (FBP) was the key physiological effector. Building on such responsiveness to FBP, Cra was proposed to act as a glycolytic flux sensor and central regulator of critical metabolic transactions. At the same time, data raised on the Cra protein of Pseudomonas putida ruled out that FBP could be an effector - but instead suggested that it was the unintentional carrier of a small contamination by F1P, the actual signal molecule. While these data on the P. putida Cra were received with skepticism - if not dismissal - by the community of the time, the paper by (Bley-Folly et al, 2018) now demonstrates beyond any reasonable doubt that the one and only effector of E. coli Cra is F1P and that every action of FBP on this regulator can be traced to its systematic mix with the authentic binder.


Assuntos
Escherichia coli , Fatores de Transcrição , Proteínas de Bactérias/genética , Frutose , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética
6.
ACS Synth Biol ; 7(6): 1519-1527, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746094

RESUMO

The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Cupriavidus/metabolismo , Ácidos Indolacéticos/metabolismo , Engenharia Metabólica/métodos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Cupriavidus/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Raízes de Plantas/microbiologia , Plasmídeos/genética , Percepção de Quorum , Simbiose
7.
mSystems ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933319

RESUMO

Fructose uptake in the soil bacterium Pseudomonas putida occurs through a canonical phosphoenolpyruvate (PEP)-dependent sugar transport system (PTSFru). The logic of the genetic circuit that rules its functioning is puzzling: the transcription of the fruBKA operon, encoding all the components of PTSFru, can escape the repression exerted by the catabolite repressor/activator protein Cra solely in the presence of intracellular fructose-1-P, an agonist formed only when fructose has been already transported. To study this apparently incongruous regulatory architecture, the changes in the transcriptome brought about by a seamless Δcra deletion in P. putida strain KT2440 were inspected under different culture conditions. The few genes found to be upregulated in the cra mutant unexpectedly included PP_3443, encoding a bona fide glyceraldehyde-3-P dehydrogenase. An in silico model was developed to explore emergent properties that could result from such connections between sugar uptake with Cra and PEP. Simulation of fructose transport revealed that sugar uptake called for an extra supply of PEP (obtained through the activity of PP_3443) that was kept (i.e., memorized) even when the carbohydrate disappeared from the medium. This feature was traced to the action of two sequential inverters that connect the availability of exogenous fructose to intracellular PEP levels via Cra/PP_3443. The loss of such memory caused a much longer lag phase in cells shifted from one growth condition to another. The term "metabolic widget" is proposed to describe a merged biochemical and regulatory patch that tailors a given node of the cell molecular network to suit species-specific physiological needs. IMPORTANCE The regulatory nodes that govern metabolic traffic in bacteria often show connectivities that could be deemed unnecessarily complex at a first glance. Being a soil dweller and plant colonizer, Pseudomonas putida frequently encounters fructose in the niches that it inhabits. As is the case with many other sugars, fructose is internalized by a dedicated phosphoenolpyruvate (PEP)-dependent transport system (PTSFru), the expression of which is repressed by the fructose-1-P-responding Cra regulatory protein. However, Cra also controls a glyceraldehyde-3-P dehydrogenase that fosters accumulation of PEP (i.e., the metabolic fuel for PTSFru). A simple model representing this metabolic and regulatory device revealed that such an unexpected connectivity allows cells to shift smoothly between fructose-rich and fructose-poor conditions. Therefore, although the metabolic networks that handle sugar (i.e., fructose) consumption look very similar in most eubacteria, the way in which their components are intertwined endows given microorganisms with emergent properties for meeting species-specific and niche-specific needs.

8.
FEBS Open Bio ; 4: 377-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918052

RESUMO

Fructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (Cra(PP)) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex. However, isothermal titration microcalorimetry failed to expose any specific interaction between Cra(PP) and FBP or G6P. To solve this paradox, transcriptional activity of a PfruB-lacZ fusion was measured in wild-type and ΔfruB cells growing on substrates that change the intracellular concentrations of F1P and FBP. The data indicated that PfruB activity was stimulated by fructose but not by glucose or succinate. This suggested that Cra(PP) represses expression in vivo of the cognate fruBKA operon in a fashion dependent just on F1P, ruling out any other physiological effector. Molecular docking and dynamic simulations of the Cra-agonist interaction indicated that both metabolites can bind the repressor, but the breach in the relative affinity of Cra(PP) for F1P vs FBP is three orders of magnitude larger than the equivalent distance in the Escherichia coli protein. This assigns the Cra protein of P. putida the sole role of transducing the presence of fructose in the medium into a variety of direct and indirect physiological responses.

9.
Methods Mol Biol ; 1149: 479-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818927

RESUMO

The characterization and parameterization of promoters is crucial for the study of gene regulatory networks. While a number of techniques are available for this purpose, the use of reporter fusions integrated in the chromosome of a bacterial host affords precise quantification of transcriptional responses with high reproducibility. Here, we describe the integration of green fluorescent protein (GFP) and lacZ reporter cassettes using either mini-Tn7-based vectors or homologous chromosomal recombination to analyze gene regulation at transcriptional and post-transcriptional levels.


Assuntos
Fusão Gênica Artificial/métodos , Cromossomos Bacterianos/genética , Mutagênese Insercional/genética , Pseudomonas putida/genética , Transcrição Gênica , Elementos de DNA Transponíveis/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Recombinação Homóloga/genética , Regiões Promotoras Genéticas , beta-Galactosidase/metabolismo
10.
Appl Environ Microbiol ; 73(15): 4832-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17557847

RESUMO

In Sinorhizobium meliloti, the Mur(Sm) protein, a homologue of the ferric uptake regulator (Fur), mediates manganese-dependent regulation of the MntABCD manganese uptake system. In this study, we analyzed Mur(Sm) binding to the promoter region of the S. meliloti mntA gene. We demonstrated that Mur(Sm) protein binds with high affinity to the promoter region of mntA gene in a manganese-responsive manner. Moreover, the results presented here indicate that two monomers, or one dimer, of Mur(Sm) binds the DNA. The binding region was identified by DNase I footprinting analysis and covers a region of about 30 bp long that contains a palindromic sequence. The Mur(Sm) binding site, present in the mntA promoter region, is similar to a Fur box; however, manganese-activated Mur(Sm) binds a canonical Fur box with very low affinity. Furthermore, the data obtained indicate that Mur(Sm) responds to physiological concentrations of manganese.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Manganês/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Sinorhizobium meliloti/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sinorhizobium meliloti/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA