Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141891, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575086

RESUMO

Mercury pollution poses a global health threat due to its high toxicity, especially in seafood where it accumulates through various pathways. Developing effective and affordable technologies for mercury removal from water is crucial. Adsorption stands out as a promising method, but creating low-cost materials with high selectivity and capacity for mercury adsorption is challenging. Here we show a sustainable method to synthesize low-cost sulfhydrylated cellulose with ethylene sulfide functionalities bonded glucose units. Thiol-functionalized cellulose exhibits exceptional adsorption capacity (1325 mg g-1) and selectivity for Hg(II) over other heavy metals (Co, Cu, Zn, Pb) and common cations (Ca++, Mg++) found in natural waters. It performs efficiently across a wide pH range and different aqueous matrices, including wastewater, and can be regenerated and reused multiple times without significant loss of performance. This approach offers a promising solution for addressing mercury contamination in water sources.


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Água/química , Celulose/química , Compostos de Sulfidrila , Adsorção , Poluentes Químicos da Água/química , Cinética
3.
Sci Rep ; 13(1): 2068, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740719

RESUMO

The synthesis and design of two-dimensional supramolecular assemblies with specific functionalities is one of the principal goals of the emerging field of molecule-based electronics, which is relevant for many technological applications. Although a large number of molecular assemblies have been already investigated, engineering uniform and highly ordered two-dimensional molecular assemblies is still a challenge. Here we report on a novel approach to prepare wide highly crystalline molecular assemblies with tunable structural properties. We make use of the high-reactivity of the carboxylic acid functional moiety and of the predictable structural features of non-polar alkane chains to synthesize 2D supramolecular assemblies of 4-(decyloxy)benzoic acid (4DBA;C[Formula: see text]H[Formula: see text]O[Formula: see text]) on a Au(111) surface. By means of scanning tunneling microscopy, density functional theory calculations and photoemission spectroscopy, we demonstrate that these molecules form a self-limited highly ordered and defect-free two-dimensional single-layer film of micrometer-size, which exhibits a nearly-freestanding character. We prove that by changing the length of the alkoxy chain it is possible to modify in a controlled way the molecular density of the "floating" overlayer without affecting the molecular assembly. This system is especially suitable for engineering molecular assemblies because it represents one of the few 2D molecular arrays with specific functionality where the structural properties can be tuned in a controlled way, while preserving the molecular pattern.

4.
Nat Commun ; 14(1): 664, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750751

RESUMO

Polydopamine is a biomimetic self-adherent polymer, which can be easily deposited on a wide variety of materials. Despite the rapidly increasing interest in polydopamine-based coatings, the polymerization mechanism and the key intermediate species formed during the deposition process are still controversial. Herein, we report a systematic investigation of polydopamine formation on halloysite nanotubes; the negative charge and high surface area of halloysite nanotubes favour the capture of intermediates that are involved in polydopamine formation and decelerate the kinetics of the process, to unravel the various polymerization steps. Data from X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopies demonstrate that in the initial stage of polydopamine deposition, oxidative coupling reaction of the dopaminechrome molecules is the main reaction pathway that leads to formation of polycatecholamine oligomers as an intermediate and the post cyclization of the linear oligomers occurs subsequently. Furthermore, TRIS molecules are incorporated into the initially formed oligomers.

5.
Adv Mater ; 34(30): e2201353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485142

RESUMO

Lead halide perovskite nanocrystals are highly attractive for next-generation optoelectronics because they are easy to synthesize and offer great compositional and morphological tunability. However, the replacement of lead by tin for sustainability reasons is hampered by the unstable nature of Sn2+ oxidation state and by an insufficient understanding of the chemical processes involved in the synthesis. Here, an optimized synthetic route is demonstrated to obtain stable, tunable, and monodisperse CsSnI3 nanocrystals, exhibiting well-defined excitonic peaks. Similar to lead halide perovskites, these nanocrystals are prepared by combining a precursor mixture of SnI2 , oleylamine, and oleic acid, with a Cs-oleate precursor. Among the products, nanocrystals with 10 nm lateral size in the γ-orthorhombic phase prove to be the most stable. To achieve such stability, an excess of precursor SnI2 as well as substoichiometric Sn:ligand ratios are key. Structural, compositional, and optical investigations complemented by first-principle density functional theory calculations confirm that nanocrystal nucleation and growth follow the formation of (R-NH3 + )2 SnI4 nanosheets, with R = C18 H35 . Under specific synthetic conditions, stable mixtures of 3D nanocrystals CsSnI3 and 2D nanosheets (Ruddlesden-Popper (R-NH3 + )2 Csn -1 Snn I3 n +1 with n > 1) are obtained. These results set a path to exploiting the high potential of Sn halide perovskite nanocrystals for opto-electronic applications.

6.
Small Methods ; 5(12): e2100868, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928018

RESUMO

Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.

7.
Ind Eng Chem Res ; 60(44): 15999-16010, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34949902

RESUMO

This work reports initial results on the effect of low concentrations (ppm level) of a stabilizing agent (2,6-di-tert-butyl-4-methylphenol, BHT) present in an off-the-shelf solvent on the catalyst performance for the hydrogenolysis of γ-butyrolactone over Cu-ZnO-based catalysts. Tetrahydrofuran (THF) was employed as an alternative solvent in the hydrogenolysis of γ-butyrolactone. It was found that the Cu-ZnO catalyst performance using a reference solvent (1,4-dioxane) was good, meaning that the equilibrium conversion was achieved in 240 min, while a zero conversion was found when employing tetrahydrofuran. The deactivation was studied in more detail, arriving at the preliminary conclusion that one phenomenon seems to play a role: the poisoning effect of a solvent additive present at the ppm level (BHT) that appears to inhibit the reaction completely over a Cu-ZnO catalyst. The BHT effect was also visible over a commercial Cu-ZnO-MgO-Al2O3 catalyst but less severe than that over the Cu-ZnO catalyst. Hence, the commercial catalyst is more tolerant to the solvent additive, probably due to the higher surface area. The study illustrates the importance of solvent choice and purification for applications such as three-phase-catalyzed reactions to achieve optimal performance.

8.
Dalton Trans ; 50(42): 15062-15070, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610072

RESUMO

The great interest in aluminium nitride thin films has been attributed to their excellent dielectric, thermal and mechanical properties. Here we present the results of amorphous AlN films obtained by atomic layer deposition. We used trimethylaluminum and monomethylhydrazine as the precursors at a deposition temperature of 375-475 °C. The structural and mechanical properties and chemical composition of the synthesized films were investigated in detail by X-ray diffraction, X-ray photoelectron spectroscopy, electron and probe microscopy and nanoindentation. The obtained films were compact and continuous, exhibiting amorphous nature with homogeneous in-depth composition, at an oxygen content of as low as 4 at%. The mechanical properties were comparable to those of AlN films produced by other techniques.

9.
Front Chem ; 8: 564838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094101

RESUMO

In this work, we report on a facile and rapid synthetic procedure to create highly porous heterostructures with tailored properties through the silylation of organically modified graphene oxide. Three silica precursors with various structural characteristics (comprising alkyl or phenyl groups) were employed to create high-yield silica networks as pillars between the organo-modified graphene oxide layers. The removal of organic molecules through the thermal decomposition generates porous heterostructures with very high surface areas (≥ 500 m2/g), which are very attractive for potential use in diverse applications such as catalysis, adsorption and as fillers in polymer nanocomposites. The final hybrid products were characterized by X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopies, thermogravimetric analysis, scanning electron microscopy and porosity measurements. As proof of principle, the porous heterostructure with the maximum surface area was chosen for investigating its CO2 adsorption properties.

10.
Nanotechnology ; 31(36): 365603, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442980

RESUMO

Porphyrins are a versatile class of molecules, which have attracted attention over the years due to their electronic, optical and biological properties. Self-assembled monolayers of porphyrins were widely studied on metal surfaces in order to understand the supramolecular organization of these molecules, which is a crucial step towards the development of devices starting from the bottom-up approach. This perspective could lead to tailor the interfacial properties of the surface, depending on the specific interaction between the molecular assembly and the metal surface. In this study, we revisit the investigation of the assembly of zinc-tetraphenylporphyrins on Au(111) in order to explore the adsorption of the molecular network on the noble metal substrate. The combined analysis of scanning tunneling microscopy (STM) imaging and core levels photoemission spectroscopy measurements support a peculiar arrangement of the ZnTPP molecular network, with Zn atoms occupying the bridge sites of the Au surface atoms. Furthermore, we prove that, at few-layers coverage, the interaction between the deposited layers allows a relevant molecular mobility of the adlayer, as observed by STM and supported by core levels photoemission analysis.

11.
Langmuir ; 35(46): 14761-14768, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31657218

RESUMO

The ability of Nile Red to self-assemble into supramolecular packings on Au(111) was studied using scanning tunneling microscopy and modeled through theoretical semiempirical calculations. At both submonolayer (sub-ML) and ML coverages, two distinct molecular packings, that is, four-leaf clover and dense chain, were observed, both weakly interacting with the underlying metal surface. Theoretical calculations suggested that the dipole moment plays a subtle role in both molecular assemblies, held together by hydrogen bonds between the Nile Red molecules. Furthermore, although both molecular assemblies were observed in as-deposited samples, a mild thermal annealing caused the transition from the four-leaf clover to the dense-chain packing, pointing out the greater stability of the dense-chain configuration. The study further emphasized how the established interactions between the Nile Red molecules are strongly influenced by the surrounding environment.

12.
Nanoscale ; 9(33): 11959-11968, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28792033

RESUMO

The ability to control the transition from a two-dimensional (2D) monolayer to the three-dimensional (3D) molecular structure in the growth of organic layers on surfaces is essential for the production of functional thin films and devices. This has, however, proved to be extremely challenging, starting from the currently limited ability to attain a molecular scale characterization of this transition. Here, through innovative application of low-dose electron diffraction and aberration-corrected transmission electron microscopy (acTEM), combined with scanning tunneling microscopy (STM), we reveal the structural changes occurring as film thickness is increased from monolayer to tens of nanometers for supramolecular assembly of two prototypical benzenecarboxylic acids - terephthalic acid (TPA) and trimesic acid (TMA) - on graphene. The intermolecular hydrogen bonding in these molecules is similar and both form well-ordered monolayers on graphene, but their structural transitions with film thickness are very different. While the structure of TPA thin films varies continuously towards the 3D lattice, TMA retains its planar monolayer structure up to a critical thickness, after which a transition to a polycrystalline film occurs. These distinctive structural evolutions can be rationalized in terms of the topological differences in the 3D crystallography of the two molecules. The templated 2D structure of TPA can smoothly map to its 3D structure through continuous molecular tilting within the unit cell, whilst the 3D structure of TMA is topologically distinct from its 2D form, so that only an abrupt transition is possible. The concept of topological protection of the 2D structure gives a new tool for the molecular design of nanostructured films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...