Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 61, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439108

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are increasingly employed in regenerative medicine approaches for their immunomodulatory and anti-inflammatory properties, which are encoded in their secretome including extracellular vesicles (EVs). The Hoffa fat pad (HFP) located infrapatellarly harbours MSCs that could assist in tissue homeostasis in osteoarthritic joints. Intraarticular injection therapies based on blood products could modulate the populations of released HFP-MSC-EVs in a quantitative manner. METHODS: To obtain amounts of HFP-MSC-derived EVs that allow pre-clinical evaluation, suitable EV production systems need to be developed. This work investigates the release of EVs from primary HFP-MSCs cultivated in a 3D environment using microcarrier suspension culture in a vertical wheel bioreactor in comparison to conventional 2D culture. To simulate an intraarticular blood product therapy, cultures were treated with citrate-anticoagulated platelet-rich plasma (CPRP) or hyperacute serum (hypACT) before EV collection. HFP-MSC-EVs are enriched via ultrafiltration and characterised via Western Blot, nanoparticle tracking analysis in scatter as well as fluorescence mode. EV potency was determined via RT-qPCR analysing the expression of type II and X collagen (COL2 and COL10), as well as inducible nitric oxide synthase (iNOS) in primary OA chondrocytes. RESULTS: Blood product supplementation elevated HFP-MSC metabolic activity as determined via XTT assay over the course of 14 days. 3D culture resulted in a roughly 100-fold EV yield compared to 2D culture and elevated number of EVs released per cell. Total protein content correlated with the EV concentration. While typical EV marker proteins such as CD9, CD63 or Alix were detected in total protein extracts, CD9 and CD73 colocalised on individual EVs highlighting their cell origin. The type of blood product treatment did not affect the size or concentration of EVs obtained from HFP-MSCs. Assessing potency of 3D culture EVs in comparison to 2D EVs revealed superior biological activity with regard to inhibition of inflammation, inhibition of chondrocyte hypertrophy and induction of cartilage-specific ECM production. CONCLUSIONS: HFP-MSCs proliferate in presence of human blood products indicating that animal serum in culture media can be avoided in the future. The culture of HFP-MSCs in the employed bioreactor was successfully used to generate quantities of EVs that could allow evaluation of HFP-MSC-EV-mediated effects in pre-clinical settings. In addition, EV potency of 3D EVs is superior to EVs obtained in conventional 2D culture flasks.


Assuntos
Células-Tronco Mesenquimais , Animais , Humanos , Suspensões , Tecido Adiposo , Bioensaio , Reatores Biológicos
2.
Methods Mol Biol ; 2598: 123-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355289

RESUMO

Extracellular vesicles (EVs) have the capacity for use in cartilage tissue engineering by stimulating tissue repair and microenvironmental reprogramming. This makes them ideal candidates for treating focal cartilage defects and cartilage degeneration in osteoarthritis (OA). Observational studies have reported beneficial biological effects of EVs, such as inhibition of inflammation, enhanced extracellular matrix deposition, and reduced cartilage degradation. Isolation of EVs derived from different source materials such as conditioned cell culture media or biofluids is essential to attribute observed biological effects to EVs as genuine effectors. This chapter presents a density- and a size-based method as well as a combination of both for isolation of EVs from conditioned cell culture media or biofluids. In addition, three methods for characterization of isolated EVs are suggested based on physical properties, protein profiling, and ultrastructural morphology.


Assuntos
Vesículas Extracelulares , Osteoartrite , Humanos , Engenharia Tecidual/métodos , Cartilagem/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Vesículas Extracelulares/metabolismo , Matriz Extracelular/metabolismo , Meios de Cultivo Condicionados/metabolismo , Condrócitos/metabolismo
3.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299123

RESUMO

Hyperacute serum (HAS) is a blood derivative product that promotes the proliferation of various cell types and controls inflammation in vitro. The aim of this study is to investigate the regenerative potential of different formulations of HAS, including lyophilized and hyaluronic acid combined versions, to obtain a stable and standardized therapeutic in osteoarthritis (OA), which may be able to overcome the variability limitations of platelet-rich plasma (PRP). Primary human osteoarthritic chondrocytes were used for testing cellular viability and gene expression of OA-related genes. Moreover, a co-culture of human explants of cartilage, bone and synovium under inflammatory conditions was used for investigating the inflammatory control capacities of the different therapeutics. In this study, one formulation of lyophilized HAS achieved the high cell viability rates of liquid HAS and PRP. Gene expression analysis showed that HAS induced higher Col1a1 expression than PRP. Cytokine quantification from supernatant fluids revealed that HAS treatment of inflamed co-cultures significantly reduced levels of IL-5, IL-15, IL-2, TNFα, IL-7 and IL-12. To conclude, lyophilized HAS is a stable and standardized therapeutic with high potential in joint regeneration.


Assuntos
Condrócitos/citologia , Osteoartrite/terapia , Plasma Rico em Plaquetas/química , Regeneração , Medicina Regenerativa/normas , Soro/química , Adulto , Técnicas de Cocultura , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade
4.
Curr Issues Mol Biol ; 43(2): 665-675, 2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287259

RESUMO

Intra-articular injection of different types of blood-derived products is gaining popularity and clinical importance in the treatment of degenerative cartilage disorders such as osteoarthritis. The regenerative potential of two types of platelet-rich plasma (PRP), prepared in the presence of EDTA (EPRP) and citrate (CPRP) and an alternative blood product-hyperacute serum (hypACT) was evaluated using a 3D osteoarthritic chondrocyte pellet model by assessing the metabolic cell activity, cartilage-related gene expression and extracellular matrix deposition within the pellets. Chondrocyte viability was determined by XTT assay and it revealed no significant difference in metabolic activity of OA chondrocyte pellets after supplementation with different blood products. Nevertheless, the selection of blood products influenced the cartilage-related genes expression, ECM morphology and the tissue quality of pellets. Both PRP types had a different biological effect depending upon concentration and even though CPRP is widely used in clinics our assessment did not reveal good results in gene expression either tissue quality. HypACT supplementation resulted in superior cartilage-related genes expression together with tissue quality and seemed to be the most stable product since no remarkable changes were observed between the two different concentrations. All in all, for successful regenerative therapy, possible molecular mechanisms induced by blood-derived products should be always carefully investigated and adapted to the specific medical indications.


Assuntos
Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Osteogênese , Fibrina Rica em Plaquetas , Plasma Rico em Plaquetas , Regeneração , Adulto , Biomarcadores , Técnicas de Cultura de Células , Células Cultivadas , Condrócitos/metabolismo , Metabolismo Energético , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Fibrina Rica em Plaquetas/metabolismo , Plasma Rico em Plaquetas/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281278

RESUMO

Osteoarthritis (OA) is hallmarked by a progressive degradation of articular cartilage. One major driver of OA is inflammation, in which cytokines such as IL-6, TNF-α and IL-1ß are secreted by activated chondrocytes, as well as synovial cells-including macrophages. Intra-articular injection of blood products-such as citrate-anticoagulated plasma (CPRP), hyperacute serum (hypACT), and extracellular vesicles (EVs) isolated from blood products-is gaining increasing importance in regenerative medicine for the treatment of OA. A co-culture system of primary OA chondrocytes and activated M1 macrophages was developed to model an OA joint in order to observe the effects of EVs in modulating the inflammatory environment. Primary OA chondrocytes were obtained from patients undergoing total knee replacement. Primary monocytes obtained from voluntary healthy donors and the monocytic cell line THP-1 were differentiated and activated into proinflammatory M1 macrophages. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and Western blot. Gene expression analysis of chondrocytes by RT-qPCR revealed increased type II collagen expression, while cytokine profiling via ELISA showed lower TNF-α and IL-1ß levels associated with EV treatment. In conclusion, the inflammation model provides an accessible tool to investigate the effects of blood products and EVs in the inflammatory context of OA.


Assuntos
Condrócitos/imunologia , Vesículas Extracelulares/imunologia , Osteoartrite/terapia , Condrócitos/metabolismo , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Inflamação/terapia , Injeções Intra-Articulares , Interleucina-1beta/metabolismo , Masculino , Modelos Biológicos , Monócitos/imunologia , Osteoartrite/genética , Osteoartrite/imunologia , Medicina Regenerativa/métodos , Fator de Necrose Tumoral alfa/metabolismo
6.
Sci Rep ; 11(1): 5823, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712660

RESUMO

Cartilage breakdown, inflammation and pain are hallmark symptoms of osteoarthritis, and autologous blood products such as citrate-anticoagulated platelet-rich plasma (CPRP) or hyperacute serum (hypACT) have been developed as a regenerative approach to rebuild cartilage, inhibit inflammation and reduce pain. However, mechanisms of action of these blood derivatives are still not fully understood, in part due to the large number of components present in these medical products. In addition, the discovery of extracellular vesicles (EVs) and their involvement in intercellular communication mediated by cargo molecules like microRNAs (miRNAs) opened up a whole new level of complexity in understanding blood products. In this study we focused on the development of an isolation protocol for EVs from CPRP and hypACT that can also deplete lipoproteins, which are often co-isolated in EV research due to shared physical properties. Several isolation methods were compared in terms of particle yield from CPRP and hypACT. To gain insights into the functional repertoire conveyed via EV-associated miRNAs, we performed functional enrichment analysis and identified NFκB signaling strongly targeted by CPRP EV miRNAs, whereas hypACT EV miRNAs affect IL6- and TGFß/SMAD signaling.


Assuntos
Vesículas Extracelulares/genética , Lipoproteínas/isolamento & purificação , MicroRNAs/genética , Cromatografia em Gel , Vesículas Extracelulares/química , Humanos , MicroRNAs/análise , Plasma Rico em Plaquetas/química , Soro/química , Ultracentrifugação
7.
Front Cell Dev Biol ; 8: 593386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363147

RESUMO

As the world's population is aging, the incidence of the degenerative disease Osteoarthritis (OA) is increasing. Current treatment options of OA focus on the alleviation of the symptoms including pain and inflammation rather than on restoration of the articular cartilage. Cell-based therapies including the application of mesenchymal stromal cells (MSCs) have been a promising tool for cartilage regeneration approaches. Due to their immunomodulatory properties, their differentiation potential into cells of the mesodermal lineage as well as the plurality of sources from which they can be isolated, MSCs have been applied in a vast number of studies focusing on the establishment of new treatment options for Osteoarthritis. Despite promising outcomes in vitro and in vivo, applications of MSCs are connected with teratoma formation, limited lifespan of differentiated cells as well as rejection of the cells after transplantation, highlighting the need for new cell free approaches harboring the beneficial properties of MSCs. It has been demonstrated that the regenerative potential of MSCs is mediated by the release of paracrine factors rather than by differentiation into cells of the desired tissue. Besides soluble factors, extracellular vesicles are the major component of a cell's secretome. They represent novel mechanisms by which (pathogenic) signals can be communicated between cell types as they deliver bioactive molecules (nucleic acids, proteins, lipids) from the cell of origin to the target cell leading to specific biological processes upon uptake. This review will give an overview about extracellular vesicles including general characteristics, isolation methods and characterization approaches. Furthermore, the role of MSC-derived extracellular vesicles in in vitro and in vivo studies for cartilage regeneration will be summarized with special focus on transported miRNA which either favored the progression of OA or protected the cartilage from degradation. In addition, studies will be reviewed investigating the impact of MSC-derived extracellular vesicles on inflammatory arthritis. As extracellular vesicles are present in all body fluids, their application as potential biomarkers for OA will also be discussed in this review. Finally, studies exploring the combination of MSC-derived extracellular vesicles with biomaterials for tissue engineering approaches are summarized.

8.
Front Bioeng Biotechnol ; 8: 584050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102466

RESUMO

Autologous blood products gain increasing interest in the field of regenerative medicine as well as in orthopedics, aesthetic surgery, and cosmetics. Currently, citrate-anticoagulated platelet-rich plasma (CPRP) preparations are often applied in osteoarthritis (OA), but more physiological and cell-free alternatives such as hyperacute serum (hypACT) are under development. Besides growth factors, blood products also bring along extracellular vesicles (EVs) packed with signal molecules, which open up a new level of complexity at evaluating the functional spectrum of blood products. Large proportions of EVs originated from platelets in CPRP and hypACT, whereas very low erythrocyte and monocyte-derived EVs were detected via flow cytometry. EV treatment of chondrocytes enhanced the expression of anabolic markers type II collagen, SRY-box transcription factor 9 (SOX9), and aggrecan compared to full blood products, but also the catabolic marker and tissue remodeling factor matrix metalloproteinase 3, whereas hypACT EVs prevented type I collagen expression. CPRP blood product increased SOX9 protein expression, in contrast to hypACT blood product. However, hypACT EVs induced SOX9 protein expression while preventing interleukin-6 secretion. The results indicate that blood EVs are sufficient to induce chondrogenic gene expression changes in OA chondrocytes, while preventing proinflammatory cytokine release compared to full blood product. This highlights the potential of autologous blood-derived EVs as regulators of cartilage extracellular matrix metabolism and inflammation, as well as candidates for new cell-free therapeutic approaches for OA.

9.
Stem Cells Int ; 2019: 1358267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082382

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (AD-MSCs) from fat tissue considered "surgical waste" during joint surgery may provide a potent source for regenerative medicine. Intra-articular, homologous fat tissue (Hoffa's fat pad, pouch fat) might possess a superior chondrogenic and osteogenic differentiation potential in comparison to extra-articular, nonhomologous fat. Blood products might further enhance this potential. METHODS: AD-MSCs were isolated from fat tissue of 3 donors from 3 locations each, during total knee replacement. Isolated cells were analyzed via flow cytometry. Cells were supplemented with blood products: two types of platelet-rich plasma (EPRP-PRP prepared in the presence of EDTA; CPRP-PRP prepared in the presence of citrate), hyperacute serum (hypACT), and standard fetal calf serum (FCS) as a positive control. The viability of the cells was determined by XTT assay, and the progress of differentiation was tested via histological staining and monitoring of specific gene expression. RESULTS: Blood products enhance ex vivo cell metabolism. Chondrogenesis is enhanced by EDTA-PRP and osteogenesis by citrate PRP, whereas hyperacute serum enhances both differentiations comparably. This finding was consistent in histological analysis as well as in gene expression. Lower blood product concentrations and shorter differentiation periods lead to superior histological results for chondrogenesis. Both PRP types had a different biological effect depending upon concentration, whereas hyperacute serum seemed to have a more consistent effect, independent of the used concentration. CONCLUSION: (i) Blood product preparation method, (ii) type of anticoagulant, (iii) differentiation time, and (iv) blood product concentration have a significant influence on stem cell viability and the differentiation potential, favouring no use of anticoagulation, shorter differentiation time, and lower blood product concentrations. Cell-free blood products like hyperacute serum may be considered as an alternative supplementation in regenerative medicine, especially for stem cell therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...