Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 166(6): 401-410, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855431

RESUMO

In brief: Ubiquitination plays a pivotal role in a multitude of cellular functions; however, the precise contributions of various ubiquitin ligases in governing early developmental processes remain largely unexplored. This study revealed that the E3 ubiquitin ligases DCAF13 and RNF114 are both necessary for the normal regulation of early porcine embryo development. Abstract: Ubiquitylation is required for normal regulation of many biological functions by modulating several protein facets such as structure, stability, interaction, localization, and degradation. In this study, we explored the roles of two E3 ubiquitin ligases (E3s), the DDB1- and CUL4-associated factor 13 (DCAF13) and the Ring finger protein 114 (RNF114), in the regulation of porcine embryo development. Attenuation of DCAF13 mRNA decreased embryo development at the blastocyst stage, while the development of RNF114-attenuated embryos was not significantly different than that of control embryos. The average number of cells per blastocyst was decreased in DCAF13-attenuated embryos and increased in RNF114-attenuated embryos compared to controls. The relative mRNA abundance of the histone methyltransferase SUV39H1, which regulates histone H3 lysine 9 trimethylation (H3K9me3), was increased in both DCAF13- and RNF114-attenuated embryos, but nuclear immunofluorescence signal for H3K9me3 on day 3 embryos was not significantly altered between attenuated and control embryos. Nuclear immunofluorescence signal for H3K4m3 was decreased in DCAF13-attenuated embryos, but it was increased in RNF114-attenuated embryos compared to controls. Attenuation of DCAF13 and RNF114 mRNAs increased transcript levels for the DNA recombinase RAD51 and decreased expression of phosphorylated histone H2A.X (γH2AX), which suggests an impact on DNA damage repair. In addition, lower mRNA expression of the lysine demethylases 5B (KDM5B) and 5C (KDM5C), both involved in embryo genome activation and DNA repair, was detected in DCAF13-attenuated embryos. These findings indicated that both DCAF13 and RNF114 have important roles in the regulation of the early development of porcine embryos.


Assuntos
Desenvolvimento Embrionário , Fator XIII , Suínos , Ubiquitina-Proteína Ligases , Animais , Blastocisto , Desenvolvimento Embrionário/genética , Fator XIII/metabolismo , Lisina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos/embriologia , Proteínas de Ligação a RNA , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077022

RESUMO

DNA damage in early-stage embryos impacts development and is a risk factor for segregation of altered genomes. DNA damage response (DDR) encompasses a sophisticated network of proteins involved in sensing, signaling, and repairing damage. DDR is regulated by reversible post-translational modifications including acetylation, methylation, phosphorylation, ubiquitylation, and SUMOylation. While important regulators of these processes have been characterized in somatic cells, their roles in early-stage embryos remain broadly unknown. The objective of this study was to explore how ubiquitylation and SUMOylation are involved in the regulation of early development in porcine embryos by assessing the mRNA profile of genes encoding ubiquitination (UBs), deubiquitination (DUBs), SUMOylation (SUMOs) or deSUMOylation (deSUMOs) enzymes in oocyte and embryos at different stages of development, and to evaluate if the induction of DNA damage at different stages of embryo development would alter the mRNA abundance of these genes. Pig embryos were produced by in vitro fertilization and DNA damage was induced by ultraviolet (UV) light exposure for 10 s on days 2, 4 or 7 of development. The relative mRNA abundance of most UBs, DUBs, SUMOs, and deSUMOs was higher in oocytes and early-stage embryos than in blastocysts. Transcript levels for UBs (RNF20, RNF40, RNF114, RNF169, CUL5, DCAF2, DECAF13, and DDB1), DUBs (USP16), and SUMOs (CBX4, UBA2 and UBC9), were upregulated in early-stage embryos (D2 and/or D4) compared to oocytes and blastocysts. In response to UV-induced DNA damage, transcript levels of several UBs, DUBs, SUMOs, and deSUMOs decreased in D2 and D4 embryos, but increased in blastocysts. These findings revealed that transcript levels of genes encoding for important UBs, DUBs, SUMOs, and deSUMOs are regulated during early embryo development and are modulated in response to induced DNA damage. This study has also identified candidate genes controlling post-translational modifications that may have relevant roles in the regulation of normal embryo development, repair of damaged DNA, and preservation of genome stability in the pig embryo.


Assuntos
Blastocisto , Ubiquitina , Animais , Blastocisto/metabolismo , Dano ao DNA , Desenvolvimento Embrionário/genética , Oócitos/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Ubiquitina/metabolismo
3.
Epigenetics ; 14(11): 1088-1101, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31216927

RESUMO

There is growing evidence that histone lysine demethylases (KDMs) play critical roles in the regulation of embryo development. This study investigated if KDM7A, a lysine demethylase known to act on mono-(me1) and di-(me2) methylation of H3K9 and H3K27, participates in the regulation of early embryo development. Knockdown of KDM7A mRNA reduced blastocyst formation by 69.2% in in vitro fertilized (IVF), 48.4% in parthenogenetically activated (PA), and 48.1% in somatic cell nuclear transfer (SCNT) embryos compared to controls. Global immunofluorescence (IF) signal in KDM7A knockdown compared to control embryos was increased for H3K27me1 on D7, for H3K27me2 on D3 and D5, for H3K9me1 on D5 and D7, and for H3K9me2 on D5 embryos, but decreased for H3K9me1, me2 and me3 on D3. Moreover, KDM7A knockdown altered mRNA expression, including the downregulation of KDM3C on D3, NANOG on D5 and D7, and OCT4 on D7 embryos, and the upregulation of CDX2, KDM4B and KDM6B on D5 embryos. On D3 and D5 embryos, total cell number and mRNA expression of embryo genome activation (EGA) markers (EIF1AX and PPP1R15B) were not affected by KDM7A knockdown. However, the ratio of inner cell mass (ICM)/total number of cells in D7 blastocysts was reduced by 45.5% in KDM7A knockdown compared to control embryos. These findings support a critical role for KDM7A in the regulation of early development and cell lineage specification in porcine embryos, which is likely mediated through the modulation of H3K9me1/me2 and H3K27me1/me2 levels, and changes in the expression of other KDMs and pluripotency genes.


Assuntos
Linhagem da Célula , Histona Desmetilases/metabolismo , Animais , Blastocisto/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Histona Desmetilases/genética , Suínos
4.
Reproduction ; 157(2): 123-133, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444719

RESUMO

Insufficient epigenetic reprogramming is incompatible with normal development of embryos produced by somatic cell nuclear transfer (SCNT), but treatment with histone deacetylases inhibitors (HDACi) enhances development of SCNT embryos. However, the mechanisms underpinning HDACi benefits in SCNT embryos remain largely uncharacterized. We hypothesized that, in addition to enhancing reprogramming, HDACi treatment may promote expression of genes not required for early development of SCNT embryos. To test this hypothesis, RNA synthesis was inhibited by treating bovine SCNT embryos with 5,6-dichlorobenzimidazole 1-ß-D-ribofuranoside (DBR), which were concomitantly treated or not with Scriptaid (Scrip; an HDACi). Development to the blastocyst stage was significantly increased by treatment with Scrip alone (26.6%) or associated with DRB (28.6%) compared to Control (17.9%). The total number of nuclei was significantly improved only in embryos that were treated with both Scrip + DRB. Nuclear decondensation after SCNT was significantly increased by DRB treatment either alone or associated with Scrip. The relative mRNA expression, evaluated during the embryo genome activation (EGA) transition, revealed that some KDMs (KDM1A, KDM3A, KDM4C and KDM6A) and DNMT1 where prematurely expressed in Scrip-treated embryos. However, treatment with Scrip + DRB inhibited early mRNA expression of those genes, as well as several other KDMs (KDM4A, KDM4B, KDM5A, KDM5B, KDM5C and KDM7A) compared to embryos treated with Scrip alone. These findings revealed that HDACi improved development in SCNT embryos compared to Control, but altered the expression of genes involved in epigenetic regulation and did not improve embryo quality. Inhibition of RNA synthesis during HDACi treatment enhanced nuclear chromatin decondensation, modulated gene expression and improved SCNT embryo quality.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hidroxilaminas/farmacologia , Quinolinas/farmacologia , RNA/biossíntese , Transcrição Gênica/efeitos dos fármacos , Animais , Bovinos/embriologia , Bovinos/genética , Células Cultivadas , Reprogramação Celular/genética , Clonagem de Organismos/veterinária , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Masculino , Técnicas de Transferência Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA