Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702855

RESUMO

Green Fluorescent Proteins (GFPs) are a family of proteins with a disjunct systematic distribution; their biological functions remain speculative for the most part. Here we report studies of 3 closely related species of green sea anemones (Anthopleura) that express GFPs throughout their ectoderm. Individuals of these species maintain facultative symbiosis with zooxanthellae in their endoderm and inhabit the rocky intertidal or shallow subtidal. Thus, they depend on exposure to light to maintain photosynthesis of their symbionts, and simultaneously need to manage stresses associated with this exposure. We present experimental evidence that these sea anemones regulate the amount of GFP in their bodies in response to the surrounding light environment: they increase or reduce GFP when exposed to brighter or dimmer light, respectively, yet they maintain some GFP while in darkness, for surprisingly long periods.

2.
Proc Natl Acad Sci U S A ; 121(11): e2317017121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457522

RESUMO

Fluorescent proteins (FPs) are ubiquitous tools in research, yet their endogenous functions in nature are poorly understood. In this work, we describe a combination of functions for FPs in a clade of intertidal sea anemones whose FPs control a genetic color polymorphism together with the ability to combat oxidative stress. Focusing on the underlying genetics of a fluorescent green "Neon" color morph, we show that allelic differences in a single FP gene generate its strong and vibrant color, by increasing both molecular brightness and FP gene expression level. Natural variation in FP sequences also produces differences in antioxidant capacity. We demonstrate that these FPs are strong antioxidants that can protect live cells against oxidative stress. Finally, based on structural modeling of the responsible amino acids, we propose a model for FP antioxidant function that is driven by molecular surface charge. Together, our findings shed light on the multifaceted functions that can co-occur within a single FP and provide a framework for studying the evolution of fluorescence as it balances spectral and physiological functions in nature.


Assuntos
Anêmonas-do-Mar , Animais , Proteínas Luminescentes/metabolismo , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Antioxidantes/metabolismo , Espectrometria de Fluorescência , Estresse Oxidativo/genética , Proteínas de Fluorescência Verde/metabolismo
3.
Sci Rep ; 10(1): 4033, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132578

RESUMO

Ferritin protein is involved in biological tissues in the storage and management of iron - an essential micro-nutrient in the majority of living systems. While there are extensive studies on iron-loaded ferritin, its functionality in iron delivery is not completely clear. Here, for the first time, differential pulse voltammetry (DPV) has been successfully adapted to address the challenge of resolving a cascade of fast and co-occurring redox steps in enzymatic systems such as ferritin. Using DPV, comparative analysis of ferritins from two evolutionary-distant organisms has allowed us to propose a stepwise resolution for the complex mix of concurrent redox steps that is inherent to ferritins and to fine-tune the structure-function relationship of each redox step. Indeed, the cyclic conversion between Fe3+ and Fe2+ as well as the different oxidative steps of the various ferroxidase centers already known in ferritins were successfully discriminated, bringing new evidence that both the 3-fold and 4-fold channels can be functional in ferritin.

4.
Org Biomol Chem ; 17(15): 3765-3780, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30887974

RESUMO

Dyes with nonlinear optical (NLO) properties enable new imaging techniques and photonic systems. We have developed a dye (DANPY-1) for photonics applications in biological substrates such as nucleic acids; however, the design specification also enables it to be used for visualizing biomolecules. It is a prototype dye demonstrating a water-soluble, NLO-active fluorophore with high photostability, a large Stokes shift, and a favorable toxicity profile. A practical and scalable synthetic route to DANPY salts has been optimized featuring: (1) convergent Pd-catalyzed Suzuki coupling with pyridine 4-boronic acid, (2) site-selective pyridyl N-methylation, and (3) direct recovery of crystalline intermediates without chromatography. We characterize the optical properties, biocompatibility, and biological staining behavior of DANPY-1. In addition to stability and solubility across a range of polar media, the DANPY-1 chromophore shows a first hyperpolarizability similar to common NLO dyes such as Disperse Red 1 and DAST, a large two-photon absorption cross section for its size, substantial affinity to nucleic acids in vitro, an ability to stain a variety of cellular components, and strong sensitivity of its fluorescence properties to its dielectric environment.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Naftalenos/química , Fármacos Fotossensibilizantes/química , Piridinas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Piridinas/síntese química , Piridinas/farmacologia
5.
J Phys Chem B ; 122(19): 4993-5005, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29676911

RESUMO

The first hyperpolarizability (ß) of six fluorescent proteins (FPs), namely, enhanced green fluorescent protein, enhanced yellow fluorescent protein, SHardonnay, ZsYellow, DsRed, and mCherry, has been calculated to unravel the structure-property relationships on their second-order nonlinear optical properties, owing to their potential for multidimensional biomedical imaging. The ONIOM scheme has been employed and several of its refinements have been addressed to incorporate efficiently the effects of the microenvironment on the nonlinear optical responses of the FP chromophore that is embedded in a protective ß-barrel protein cage. In the ONIOM scheme, the system is decomposed into several layers (here two) treated at different levels of approximation (method1/method2), from the most elaborated method (method1) for its core (called the high layer) to the most approximate one (method2) for the outer surrounding (called the low layer). We observe that a small high layer can already account for the variations of ß as a function of the nature of the FP, provided the low layer is treated at an ab initio level to describe properly the effects of key H-bonds. Then, for semiquantitative reproduction of the experimental values obtained from hyper-Rayleigh scattering experiments, it is necessary to incorporate electron correlation as described at the second-order Møller-Plesset perturbation theory (MP2) level as well as implicit solvent effects accounted for using the polarizable continuum model (PCM). This led us to define the MP2/6-31+G(d):HF/6-31+G(d)/IEFPCM scheme as an efficient ONIOM approach and the MP2/6-31+G(d):HF/6-31G(d)/IEFPCM as a better compromise between accuracy and computational needs. Using these methods, we demonstrate that many parameters play a role on the ß response of FPs, including the length of the π-conjugated segment, the variation of the bond length alternation, and the presence of π-stacking interactions. Then, noticing the small diversity of the FP chromophores, these results highlight the key role of the ß-barrel and surrounding residues on ß, not only because they can locally break the noncentrosymmetry vital to a ß response but also because it can impose geometrical constraints on the chromophore.


Assuntos
Proteínas Luminescentes/química , Modelos Moleculares , Teoria Quântica , Elétrons , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Ligação de Hidrogênio , Proteínas Luminescentes/metabolismo , Solventes/química , Água/química
6.
Biochem J ; 474(24): 4193-4206, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29127253

RESUMO

Ferritin, a multimeric cage-like enzyme, is integral to iron metabolism across all phyla through the sequestration and storage of iron through efficient ferroxidase activity. While ferritin sequences from ∼900 species have been identified, crystal structures from only 50 species have been reported, the majority from bacterial origin. We recently isolated a secreted ferritin from the marine invertebrate Chaetopterus sp. (parchment tube worm), which resides in muddy coastal seafloors. Here, we present the first ferritin from a marine invertebrate to be crystallized and its biochemical characterization. The initial ferroxidase reaction rate of recombinant Chaetopterus ferritin (ChF) is 8-fold faster than that of recombinant human heavy-chain ferritin (HuHF). To our knowledge, this protein exhibits the fastest catalytic performance ever described for a ferritin variant. In addition to the high-velocity ferroxidase activity, ChF is unique in that it is secreted by Chaetopterus in a bioluminescent mucus. Previous work has linked the availability of Fe2+ to this long-lived bioluminescence, suggesting a potential function for the secreted ferritin. Comparative biochemical analyses indicated that both ChF and HuHF showed similar behavior toward changes in pH, temperature, and salt concentration. Comparison of their crystal structures shows no significant differences in the catalytic sites. Notable differences were found in the residues that line both 3-fold and 4-fold pores, potentially leading to increased flexibility, reduced steric hindrance, or a more efficient pathway for Fe2+ transportation to the ferroxidase site. These suggested residues could contribute to the understanding of iron translocation through the ferritin shell to the ferroxidase site.


Assuntos
Anelídeos/metabolismo , Ferritinas/química , Animais , Anelídeos/química , Anelídeos/genética , Domínio Catalítico , Cristalografia , Ferritinas/genética , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água do Mar/parasitologia
7.
Bioconjug Chem ; 25(4): 773-87, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24528385

RESUMO

A family of neutral fluorescent probes was developed, mimicking the overall structure of natural glycolipids in order to optimize their membrane affinity. Nonreducing commercially available di- or trisaccharidic structures were connected to a push-pull chromophore based on dicyanoisophorone electron-accepting group, which proved to fluoresce in the red region with a very large Stokes shift. This straightforward synthetic strategy brought structural variations to a series of probes, which were studied for their optical, biophysical, and biological properties. The insertion properties of the different probes into membranes were evaluated on a model system using the Langmuir monolayer balance technique. Confocal fluorescence microscopy performed on muscle cells showed completely different localizations and loading efficiencies depending on the structure of the probes. When compared to the commercially available ANEPPS, a family of commonly used membrane imaging dyes, the most efficient probes showed a similar brightness, but a sharper pattern was observed. According to this study, compounds bearing one chromophore, a limited size of the carbohydrate moiety, and an overall rod-like shape gave the best results.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/química , Glicoconjugados/química , Músculo Esquelético/citologia , Imagem Óptica , Animais , Cor , Corantes Fluorescentes/síntese química , Glicoconjugados/síntese química , Masculino , Camundongos , Camundongos Endogâmicos , Microscopia Confocal , Estrutura Molecular
8.
J Mater Chem B ; 2(44): 7747-7755, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261911

RESUMO

Innovative nanostructures made of a high payload of fluorophores and superparamagnetic nanoparticles (NPs) have simply been fabricated upon self-assembling in a two-step process. The resulting hybrid supraparticles displayed a dense shell of iron oxide nanoparticles tightly attached through an appropriate polyelectrolyte to a highly emissive non-doped nanocore made of more than 105 small organic molecules. Cooperative magnetic dipole interactions arose due to the closely packed magnetic NPs at the nanoarchitecture surface, causing enhanced NMR transverse relaxivity. Large in vivo MRI T2 contrast was thus obtained with unusually diluted solutions after intravenous injection in small rodents. Two-photon excited fluorescence imaging could be performed, achieving unprecedented location resolution for agents combining both magnetic nanoparticles and fluorescence properties. Finally, TEM imaging of the sectioned mouse tissue succeeded in isolating the core-shell structures, which represents the first image of intact complex magnetic and fluorescent nanoassemblies upon in vivo injection. Such highly cohesive dual nanoarchitectures should open great horizons toward the assessment with high spatial resolution of the drug or labeled stem cell biodistribution.

9.
J Am Chem Soc ; 135(10): 4061-9, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23406416

RESUMO

We have successfully designed and expressed a new fluorescent protein with improved second-order nonlinear optical properties. It is the first time that a fluorescent protein has been rationally altered for this particular characteristic. On the basis of the specific noncentrosymmetry requirements for second-order nonlinear optical effects, we had hypothesized that the surprisingly low first hyperpolarizability (ß) of the enhanced yellow fluorescent protein (eYFP) could be explained by centrosymmetric stacking of the chromophoric Tyr66 and the neighboring Tyr203 residue. The inversion center was removed by mutating Tyr203 into Phe203, with minor changes in the linear optical properties and even an improved fluorescence quantum yield. Structure determination by X-ray crystallography as well as linear optical characterization corroborate a correct folding and maturation. Measurement of ß by means of hyper-Rayleigh scattering (HRS) as well as their analysis using quantum chemistry calculations validate our hypothesis. This observation can eventually lead to improved red fluorescent proteins for even better performance. On the basis of the specific function (second-harmonic generation), the color of its emission, and in analogy with the "fruit" names, we propose SHardonnay as the name for this Tyr203Phe mutant of eYFP.


Assuntos
Proteínas Luminescentes/química , Cristalografia por Raios X , Proteínas Luminescentes/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...