Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576891

RESUMO

Rhodospirillum rubrum has a versatile metabolism, and as such can assimilate a broad range of carbon sources, including volatile fatty acids. These carbon sources are gaining increasing interest for biotechnological processes, since they reduce the production costs for numerous value-added compounds and contribute to the development of a more circular economy. Usually, studies characterizing carbon metabolism are performed by supplying a single carbon source; however, in both environmental and engineered conditions, cells would rather grow on mixtures of volatile fatty acids (VFAs) generated via anaerobic fermentation. In this study, we show that the use of a mixture of VFAs as carbon source appears to have a synergy effect on growth phenotype. In addition, while propionate and butyrate assimilation in Rs. rubrum is known to require an excess of bicarbonate in the culture medium, mixing them reduces the requirement for bicarbonate supplementation. The fixation of CO2 is one of the main electron sinks in purple bacteria; therefore, this observation suggests an adaptation of both metabolic pathways used for the assimilation of these VFAs and redox homeostasis mechanism. Based on proteomic data, modification of the propionate assimilation pathway seems to occur with a switch from a methylmalonyl-CoA intermediate to the methylcitrate cycle. Moreover, it seems that the presence of a mixture of VFAs switches electron sinking from CO2 fixation to H2 and isoleucine production.

2.
BMC Microbiol ; 20(1): 126, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434546

RESUMO

BACKGROUND: The great metabolic versatility of the purple non-sulfur bacteria is of particular interest in green technology. Rhodospirillum rubrum S1H is an α-proteobacterium that is capable of photoheterotrophic assimilation of volatile fatty acids (VFAs). Butyrate is one of the most abundant VFAs produced during fermentative biodegradation of crude organic wastes in various applications. While there is a growing understanding of the photoassimilation of acetate, another abundantly produced VFA, the mechanisms involved in the photoheterotrophic metabolism of butyrate remain poorly studied. RESULTS: In this work, we used proteomic and functional genomic analyses to determine potential metabolic pathways involved in the photoassimilation of butyrate. We propose that a fraction of butyrate is converted to acetyl-CoA, a reaction shared with polyhydroxybutyrate metabolism, while the other fraction supplies the ethylmalonyl-CoA (EMC) pathway used as an anaplerotic pathway to replenish the TCA cycle. Surprisingly, we also highlighted a potential assimilation pathway, through isoleucine synthesis and degradation, allowing the conversion of acetyl-CoA to propionyl-CoA. We tentatively named this pathway the methylbutanoyl-CoA pathway (MBC). An increase in isoleucine abundance was observed during the early growth phase under butyrate condition. Nevertheless, while the EMC and MBC pathways appeared to be concomitantly used, a genome-wide mutant fitness assay highlighted the EMC pathway as the only pathway strictly required for the assimilation of butyrate. CONCLUSION: Photoheterotrophic growth of Rs. rubrum with butyrate as sole carbon source requires a functional EMC pathway. In addition, a new assimilation pathway involving isoleucine synthesis and degradation, named the methylbutanoyl-CoA (MBC) pathway, could also be involved in the assimilation of this volatile fatty acid by Rs. rubrum.


Assuntos
Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Proteômica/métodos , Rhodospirillum rubrum/crescimento & desenvolvimento , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Fermentação , Aptidão Genética , Isoleucina/metabolismo , Redes e Vias Metabólicas , Mutação , Pentanóis/metabolismo , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
3.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180364

RESUMO

Purple nonsulfur bacteria represent a promising resource for biotechnology because of their great metabolic versatility. Rhodospirillum rubrum has been widely studied regarding its metabolism of volatile fatty acid, mainly acetate. As the glyoxylate shunt is unavailable in Rs. rubrum, the citramalate cycle pathway and the ethylmalonyl-coenzyme A (CoA) pathway are proposed as alternative anaplerotic pathways for acetate assimilation. However, despite years of debate, neither has been confirmed to be essential. Here, using functional genomics, we demonstrate that the ethylmalonyl-CoA pathway is required for acetate photoassimilation. Moreover, an unexpected reversible long-term adaptation is observed, leading to a drastic decrease in the lag phase characterizing the growth of Rs. rubrum in the presence of acetate. Using proteomic and genomic analyses, we present evidence that the adaptation phenomenon is associated with reversible amplification and overexpression of a 60-kb genome fragment containing key enzymes of the ethylmalonyl-CoA pathway. Our observations suggest that a genome duplication and amplification phenomenon is not only involved in adaptation to acute stress but can also be important for basic carbon metabolism and the redox balance.IMPORTANCE Purple nonsulfur bacteria represent a major group of anoxygenic photosynthetic bacteria that emerged as a promising resource for biotechnology because of their great metabolic versatility and ability to grow under various conditions. Rhodospirillum rubrum S1H has notably been selected by the European Space Agency to colonize its life support system, called MELiSSA, due to its capacity to perform photoheterotrophic assimilation of volatile fatty acids (VFAs), mainly acetate. VFAs are valuable carbon sources for many applications, combining bioremediation of contaminated environments with the generation of added-value products. Acetate is one of the major volatile fatty acids generated as a by-product of fermentation processes. In Rs. rubrum, purple nonsulfur bacteria, the assimilation of acetate is still under debate since two different pathways have been proposed. Here, we clearly demonstrate that the ethylmalonyl-CoA pathway is the major anaplerotic pathway for acetate assimilation in this strain. Interestingly, we further observed that gene duplication and amplification, which represent a well-known phenomenon in antibiotic resistance, also play a regulatory function in carbon metabolism and redox homeostasis.


Assuntos
Acetatos/metabolismo , Adaptação Fisiológica/genética , Redes e Vias Metabólicas/genética , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo , Acil Coenzima A , Carbono/metabolismo , Duplicação Gênica , Genoma Bacteriano , Genômica , Homeostase , Oxirredução , Proteômica , Rhodospirillum rubrum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...