Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Neurol Open ; 5(2): e000535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027469

RESUMO

Background: Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme ß-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). GBA-related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF). Methods and analysis: In this multicentre, double-blind, placebo-controlled, phase II clinical trial, we randomise patients with GBA-PD in a 1:1 ratio to either oral ABX 1.2 g/day or placebo. The duration of treatment is 52 weeks. Each participant is assessed at baseline and weeks 12, 26, 38, 52 and 78. Changes in the Montreal Cognitive Assessment score and the frequency of mild cognitive impairment and dementia between baseline and weeks 52 are the primary outcome measures. Secondary outcome measures include changes in validated scales/questionnaires assessing motor and non-motor symptoms. Neuroimaging features and CSF neurodegeneration markers are used as surrogate markers of disease progression. GCase activity, ABX and α-synuclein levels are also analysed in blood and CSF. A repeated-measures analysis of variance will be used for elaborating results. The primary analysis will be by intention to treat. Ethics and dissemination: The study and protocols have been approved by the ethics committee of centres. The study is conducted according to good clinical practice and the Declaration of Helsinki. The trial findings will be published in peer-reviewed journals and presented at conferences. Trial registration numbers: NCT05287503, EudraCT 2021-004565-13.

2.
NPJ Parkinsons Dis ; 8(1): 113, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068246

RESUMO

Parkinson's disease (PD) patients can be classified in tremor-dominant (TD) and postural-instability-and-gait-disorder (PIGD) motor subtypes. PIGD represents a more aggressive form of the disease that TD patients have a potentiality of converting into. This study investigated functional alterations within the cerebro-cerebellar system in PD-TD and PD-PIGD patients using stepwise functional connectivity (SFC) analysis and identified neuroimaging features that predict TD to PIGD conversion. Thirty-two PD-TD, 26 PD-PIGD patients and 60 healthy controls performed clinical/cognitive evaluations and resting-state functional MRI (fMRI). Four-year clinical follow-up data were available for 28 PD-TD patients, who were classified in 10 converters (cTD-PD) and 18 non-converters (ncTD-PD) to PIGD. The cerebellar seed-region was identified using a fMRI motor task. SFC analysis, characterizing regions that connect brain areas to the cerebellar seed at different levels of link-step distances, evaluated similar and divergent alterations in PD-TD and PD-PIGD. The discriminatory power of clinical data and/or SFC in distinguishing cPD-TD from ncPD-TD patients was assessed using ROC curve analysis. Compared to PD-TD, PD-PIGD patients showed decreased SFC in temporal lobe and occipital lobes and increased SFC in cerebellar cortex and ponto-medullary junction. Considering the subtype-conversion analysis, cPD-TD patients were characterized by increased SFC in temporal and occipital lobes and in cerebellum and ponto-medullary junction relative to ncPD-TD group. Combining clinical and SFC data, ROC curves provided the highest classification power to identify conversion to PIGD. These findings provide novel insights into the pathophysiology underlying different PD motor phenotypes and a potential tool for early characterization of PD-TD patients at risk of conversion to PIGD.

3.
Radiol Case Rep ; 13(4): 871-877, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29988793

RESUMO

In this manuscript we report the case of a 69-year-old female patient, who suffers from Parkinson's disease (PD) with a dilated Virchow-Robin space (dVRS) on the left anterior perforated substance. During a magnetic resonance imaging examination, the presence of a dVRS was discovered on the left anterior perforated substance. Subsequently, the patient has been subjected to further investigation of magnetic resonance imaging and diffusion tensor imaging (DTI). The DTI data of our PD patient showed increased peak frequency of left fractional anisotropy and decreases in the distribution of Mean Diffusivity(MD) with changes in the fiber density compared to the normal contralateral tract. We hypothesize that the DTI changes are due to dVRS. In the text a review of the recent literature on the presence of dVRSs, located in mono and bilateral seat, in patients with PD is reported, explaining its possible implications on disease progression, cognitive decline, and worsening of symptoms.

4.
Brain ; 136(Pt 3): 710-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23423673

RESUMO

Brain activity during rest is characterized by slow (0.01-0.1 Hz) fluctuations of blood oxygenation level-dependent functional magnetic resonance imaging signals. These fluctuations are organized as functional connectivity networks called resting-state networks, anatomically corresponding to specific neuronal circuits. As Parkinson's disease is mainly characterized by a dysfunction of the sensorimotor pathways, which can be influenced by levodopa administration, the present study investigated the functional connectivity changes within the sensorimotor resting-state network in drug-naïve patients with Parkinson's disease after acute levodopa administration. Using a double-blind placebo-controlled design, resting-state functional magnetic resonance imaging was carried out in 20 drug-naïve patients with Parkinson's disease, immediately before and 60 min after, oral administration of either levodopa or placebo. Control resting-state functional magnetic resonance imaging data were recorded in 18 age- and sex-matched healthy volunteers. Independent component analysis was performed to extract resting-state network maps and associated time-course spectral features. At the anatomical level, levodopa enhanced the sensorimotor network functional connectivity in the supplementary motor area, a region where drug-naïve patients with Parkinson's disease exhibited reduced signal fluctuations compared with untreated patients. At the spectral frequency level, levodopa stimulated these fluctuations in a selective frequency band of the sensorimotor network. The reported effects induced by levodopa on sensorimotor network topological and spectral features confirm that the sensorimotor system is a target of acute levodopa administration in drug-naïve patients with Parkinson's disease. Moreover, while the regional changes in supplementary motor area reflect the functional improvement in motor function, the rhythm-specific modulation induced by the dopamine precursor discloses a novel aspect of pharmacological stimulation in Parkinson's disease, adding further insight to the comprehension of levodopa action.


Assuntos
Antiparkinsonianos/uso terapêutico , Encéfalo/efeitos dos fármacos , Levodopa/uso terapêutico , Vias Neurais/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Idoso , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Descanso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...