Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Org Lett ; 26(33): 6944-6949, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39116344

RESUMO

Microcrystal electron diffraction (microED) is an emerging technique for rapid crystallographic analysis of small molecule micro- and nanocrystals. In this report, we evaluate the applicability of microED to pharmaceutical compounds through the analysis of 30 samples obtained from the process and medicinal chemistry groups at Amgen Inc. Using only 40 h of microscope time, 15 of 30 crystal structures were elucidated. From these crystal structures, all chiral compounds had the correct absolute stereochemistry assigned by dynamical refinement of continuous rotation electron diffraction data, confirming dynamical refinement as a promising tool for the absolute stereochemistry determination of pharmaceutically relevant compounds.


Assuntos
Nanopartículas , Estereoisomerismo , Estrutura Molecular , Preparações Farmacêuticas/química , Cristalografia por Raios X , Nanopartículas/química , Modelos Moleculares
2.
Angew Chem Int Ed Engl ; 63(24): e202404290, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38589297

RESUMO

Controlled modulation of electronic and magnetic properties in stimuli-responsive materials provides valuable insights for the design of magnetoelectric or multiferroic devices. This paper demonstrates the modulation of electrical and magnetic properties of a semiconductive, paramagnetic metal-organic framework (MOF) Cu3(C6O6)2 with small gaseous molecules, NH3, H2S, and NO. This study merges chemiresistive and magnetic tests to reveal that the MOF undergoes simultaneous changes in electrical conductance and magnetization that are uniquely modulated by each gas. The features of response, including direction, magnitude, and kinetics, are modulated by the physicochemical properties of the gaseous molecules. This study advances the design of multifunctional materials capable of undergoing simultaneous changes in electrical and magnetic properties in response to chemical stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...