Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 1(8): 3269-3278, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133588

RESUMO

A mesoporous silica-based drug delivery device potentially useful for bone-specific drug delivery has been designed, developed and characterized starting from MSU-type mesoporous silica. The proposed system consists of a mesoporous silica nanoparticles (MSN) based vehicle, presenting alendronate as a targeting functionality for bone tissue while ibuprofen is used as a model molecule for the drugs to be delivered. The particles are functionalized on the external surface using a propionitrile derivative that is successively hydrolyzed to a carboxylic group. Alendronate, one of the most used member of the diphosphonate drug class, is electrostatically bonded to the external carboxyl functionalities of mesoporous silica. The obtained material has been characterized by powder X-ray diffraction, N2 adsorption-desorption porosimetry, UV-vis spectrophotometry, FT-IR spectrometry and MAS-NMR 13C and 29Si. Hydroxyapatite, which simulates the bone matrix, has been synthesized with the aim of testing the targeting activity of the obtained device. In a separate test, the MSNs have been loaded with ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and its release has been determined under neutral conditions by HPLC. Moreover, biological tests were carried out. The tested devices did not show any toxicity towards normal cells, confirming their high biocompatibility and the lack of off-target effects.

2.
Int J Artif Organs ; 33(6): 381-91, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20669143

RESUMO

Preparation of tissue engineered (TE) 3D constructs to repair large bone defects is limited by the difficult supply of nutrients and oxygen to cells in the innermost regions of constructs cultured in bioreactors. Poor oxygenation negatively affects cell viability and function. Bioreactor design optimization may help relieve these limitations. Bioreactors in which cells are cultured outside bundles of hollow fiber membranes (HFMBs) are structurally similar to natural bone. HFMB operation in pure diffusion has been reported to suffice for fibroblasts, but is deemed insufficient for bone cells. In this paper, the effect of perfusion flows in the cell compartment on solute transfer was investigated in HFMBs differing in design and operating conditions. HFMBs were designed and operated using values of non-dimensional groups that ensured solutes transfer towards the cell compartment mainly by diffusion; in the presence of low to high Starling flows; in the presence of pulsatile radial flows obtained by periodically stopping the solution flow leaving the bioreactor using a pinch valve. Distribution of matter in cell-free HFMBs was evaluated with tracer experiments in an optimized apparatus. Effectiveness of solute transfer to cell compartment was assessed based on the bioreactor response in terms of the shell volume actively involved in mass transfer (V(MTA)) according to transport models developed specifically for the purpose. V(MTA) increased with increasing Starling flows. In the pulsatile radial flow mode, tracer concentration in the shell increased 3 times faster than at high Starling flows. This suggests that controlled perfusion flows in HFMBs might enable the engineering of large TE bone constructs.


Assuntos
Reatores Biológicos , Substitutos Ósseos , Perfusão , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Técnicas de Cultura de Células , Desenho de Equipamento , Humanos , Membranas Artificiais , Permeabilidade , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...