Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 6199-6222, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921041

RESUMO

Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1ß to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.

2.
BMC Complement Med Ther ; 24(1): 90, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360684

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes mellitus (T2DM); its diagnosis and treatment are based on symptomatic improvement. However, as pharmacological therapy causes multiple adverse effects, the implementation of acupunctural techniques, such as electroacupuncture (EA) has been suggested as an alternative treatment. Nonetheless, there is a lack of scientific evidence, and its mechanisms are still unclear. We present the design and methodology of a new clinical randomized trial, that investigates the effectiveness of EA for the treatment of DPN. METHODS: This study is a four-armed, randomized, controlled, multicenter clinical trial (20-week intervention period, plus 12 weeks of follow-up after concluding intervention). A total of 48 T2DM patients with clinical signs and symptoms of DPN; and electrophysiological signs in the Nerve Conduction Study (NCS); will be treated by acupuncture specialists in outpatient units in Mexico City. Patients will be randomized in a 1:1 ratio to one of the following four groups: (a) short fibre DPN with EA, (b) short fibre DPN with sham EA, (c) axonal DPN with EA and (d) axonal DPN with sham EA treatment. The intervention will consist of 32 sessions, 20 min each, per patient over two cycles of intervention of 8 weeks each and a mid-term rest period of 4 weeks. The primary outcome will be NCS parameters, and secondary outcomes will include DPN-related symptoms and pain by Michigan Neuropathy Screening Instrument (MNSI), Michigan Diabetic Neuropathy Score (MDNS), Dolour Neuropatique Score (DN-4), Semmes-Westein monofilament, Numerical Rating Scale (NRS) for pain assessment, and the 36-item Short Form Health Survey (SF-36). To measure quality of life and improve oxidative stress, the inflammatory response; and genetic expression; will be analysed at the beginning and at the end of treatment. DISCUSSION: This study will be conducted to compare the efficacy of EA versus sham EA combined with conventional diabetic and neuropathic treatments if needed. EA may improve NCS, neuropathic pain and symptoms, oxidative stress, inflammatory response, and genetic expression, and it could be considered a potential coadjutant treatment for the management of DPN with a possible remyelinating effect. TRIAL REGISTRATION: ClinicalTrials.gov. NCT05521737 Registered on 30 August 2022. International Clinical Trials Registry Platform (ICTRP) ISRCTN97391213 Registered on 26 September 2022 [2b].


Assuntos
Terapia por Acupuntura , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Eletroacupuntura , Humanos , Neuropatias Diabéticas/terapia , Eletroacupuntura/métodos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
3.
Pathogens ; 12(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764943

RESUMO

Arboviruses are an important group of pathogens that cause diseases of medical and veterinary concern worldwide. The interactions of these viruses with their host cells are complex, and frequently, the coexistence of two different viruses in the same cell results in the inhibition of replication in one of the viruses, which is a phenomenon called viral interference. This phenomenon can be exploited to develop antiviral strategies. Insect cell lines persistently infected with arboviruses are useful models with which to study viral interference. In this work, a model of C6/36-HT cells (from Aedes albopictus mosquitoes) persistently infected with Dengue virus, serotype 2, was used. Viral interference was evaluated via plaque and flow cytometry assays. The presence of heterotypic interference against the other serotypes of the same virus and homologous interference against yellow fever virus was determined; however, this cell line did not display heterologous viral interference against Sindbis virus. The mechanisms responsible for viral interference have not been fully elucidated, but small RNAs could be involved. However, the silencing of Ago3, a key protein in the genome-derived P-element-induced wimpy testis pathway, did not alter the viral interference process, suggesting that viral interference occurs independent of this pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...