Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079384

RESUMO

This article shows the results of experiments to grow Nitrogen incorporated ultrananocrystalline diamond (N-UNCD) films on commercial natural graphite (NG)/Cu anodes by hot chemical vapor deposition (HFCVD) using a gas mixture of Ar/CH4/N2/H2. The experiments focused on studying the effect of the pressure in the HFCVD chamber, filament-substrate distance, and temperature of the substrate. It was found that a substrate distance of 3.0 cm and a substrate temperature of 575 C were optimal to grow N-UNCD film on the graphite surface as determined by Raman spectroscopy, SEM, and TEM imaging. XPS analysis shows N incorporation through the film. Subsequently, the substrate surface temperature was increased using a heater, while keeping the substrate-filament distance constant at 3.0 cm. In this case, Raman spectra and SEM images of the substrate surface showed a major composition of graphite in the film as the substrate-surface temperature increased. Finally, the process pressure was increased to 10 Torr where it was seen that the growth of N-UNCD film occurred at 2.0 cm at a substrate temperature of 675 C. These results suggest that as the process pressure increases a smaller substrate-filament distance and consequently a higher substrate surface temperature can still enable the N-UNCD film growth by HFCVD. This effect is explained by a mean free path analysis of the main precursors H2 and CH3 molecules traveling from the filament to the surface of the substrate The potential impact of the process developed to grow electrically conductive N-UNCD films using the relatively low-cost HFCVD process is that this process can be used to grow N-UNCD films on commercial NG/Cu anodes for Li-ion batteries (LIBs), to enable longer stable capacity energy vs. charge/discharge cycles.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7629-7635, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892856

RESUMO

The COVID-19 pandemic disrupted the world by interrupting most supply chains, including that of the medical supply industry. The threat imposed by export restriction measures and the limitation in the availability of mechanical ventilators posed a higher risk for smaller, developing countries, used to importing most of their technologies. To actively respond to the possible device shortage, the initiative "Ventilators for Panama" was established and was able to develop two different, non-competing, open-source hardware mechanical ventilator models for emergency use in case of shortages: one based on a bag-valve design and another based on positive airway pressure. The aim of this article is to compare both devices in terms of feasibility and functionality. Results from the functional testing show that both devices perform within specification, as the error percentage is lower than 5% for the desired pressure values and a standard deviation of less than 0.5 for all cases.Clinical Relevance- This study shows the feasibility of quickly deploying two different mechanical ventilator designs for emergency use and their effectiveness.


Assuntos
COVID-19 , Países em Desenvolvimento , Estudos de Viabilidade , Humanos , Pandemias , SARS-CoV-2 , Ventiladores Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...