Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301570, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623961

RESUMO

G-Quadruplexes (G4s) are highly dynamic and polymorphic nucleic acid structures that can adopt a variety of conformations. When exposed to oxidative conditions, more specifically singlet oxygen, the guanosine nucleobases can be oxidized, which in turn can affect the conformation and folding of the G4. Based on this peculiar phenomenon, it is rationalized that G4s can serve as quantification sensors for the production of singlet oxygen. Here, a method for determining the quantum yield of singlet oxygen generation for visible as well as UV-light excited photosensitizers, using a short G4 DNA sequence, readily available from common DNA companies, as a biological and water-soluble probe, is presented.

2.
Methods ; 218: 210-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604247

RESUMO

While natural oligonucleotides (ONs) are increasingly used as therapeutic and diagnostic tools, they still face certain challenges such as low resistance to enzymatic degradation, potential immunogenicity, and delivery issues, which can limit their applications. Peptide Nucleic Acids (PNAs) are promising alternatives due to their high affinity for DNA and RNA, the high resistance to enzymatic degradation, and the easy introduction of a wide range of potential modifications. Chemical modifications that enable the covalent targeting of specific DNA and RNA strands offer additional advantages, including enhanced potency. The current study focuses on the utilization of furan-PNAs as pro-reactive probe systems and their applications to DNA and RNA targeting. Specifically, in this methodological paper, we provide practical insights into the design, synthesis, and application of furan-containing PNA probes for achieving efficient PNA-DNA and PNA-RNA interstrand crosslinking (ICL), as well as ON-templated PNA-PNA ligation systems. Furthermore, we discuss the applications of these probes in targeting DNA secondary structures, such as G-quadruplexes and i-motifs, target pull-down assays, and on-surface detection.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , RNA , Oligonucleotídeos , Furanos
3.
Nucleic Acids Res ; 51(9): 4112-4125, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971129

RESUMO

The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.


Assuntos
Alquilantes , Alquilação , Cor , DNA , Quadruplex G , Luz , Alquilantes/química , Alquilantes/efeitos da radiação , Alquilação/efeitos dos fármacos , Alquilação/efeitos da radiação , DNA/química , DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Ligantes
4.
Nucleic Acids Res ; 49(12): 6638-6659, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978760

RESUMO

G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.


Assuntos
Quadruplex G , Oligonucleotídeos/química , Genoma Humano , Humanos , Ligantes , Ácidos Nucleicos Heteroduplexes , Ácidos Nucleicos Peptídicos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...